Why Are Big Things Classical?

Why does decoher ence happen very rapidly for objectswith large numbers of
degr ees of freedom?
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1. What isthe Problem?

Decoherence, viainteraction with the environment, causes the density matrix of a system to
become diagonal in a particular basis called the pointer basis. The simple example in Chapter
? hasillustrated that the pointer states of a system approximate to its energy eigenstatesif its
energy level spacings are large compared with the energies characterising the interaction with
the environment. Decoherence naturally einselects the energy eigenstatesin this situation. The
energy eigenstates are usually spatially delocalised and hence delocalisation is the natural
condition in such acase. An example is the state of an atomic, or molecular, electron.

On the other hand, macroscopic objects tend not to be in delocalised states. They tend to bein
classical statesin which energy islocalised. Why isit that being “big” causes this? To be
consistent with the decoherence programme, “big” things must tend to have very closely
spaced energy levels — so that even an extremely weak interaction with the environment will
decohere them away from their pure energy eigenstates. Accordingly, this Chapter provides
some simple illustrations of how very close spacing of energy levels often arises naturally
when the system’s number of degrees of freedom islarge.

Although this helpsto explain why classical behaviour istypical for ‘big’ things, the
exceptionsto this rule are extremely important — see 85.

2. The Continuum Field Limit

Consider alattice consisting of alarge number of bonded atoms — sufficiently many that we
may treat it approximately as an elastic continuum. Phonons with wave-vector k are
associated with an energy 7@ and in the long wavelength limit we can consider the almost-

continuum to have a constant velocity of sound, v, such that o = VS‘E‘ . Hence 7w can be
regarded as the approximate eigen-energies where the eigenstates are given by,

‘E‘:%Jnf+n§+n§ (1)

where we have assumed a cube of material of side L and N; atoms per side, hence with
lattice spacing a= L/ Nj. In (1), the quantum numbers (nx, ny, nz) takethevalues 1, 2, 3...

to amaximum of Nj;. In atrue continuum the quantum numbers could be arbitrarily large, but

for adiscrete lattice the number of classical natural frequenciesis limited to the number of
degrees of freedom.

Considering a 1D line of atoms the energy spacing is thus,
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The energy level spacing decreases asymptotically to zero for large numbers of atomsin
inverse proportion to the number of atomsin theline, <1/ N; .

If we consider a 2D square array of atoms, the minimum energy spacing is obtained as the
difference of (1), evaluated at n, =1,n, = N; and n, =2,n, = Ny, giving, for large Ny,
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Hence, AE ~ 3nhv _ 37[71\;5 _ 3nhvg @)
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where N, = NZ isthe number of atomsin the square array. Hence the result is the same as

for the 1D case: the minimum energy level spacing reduces asymptotically to zero in inverse
proportion to the total number of atoms.

For the 3D case we get, using n, =1, n, =N; and n, =N,, and An, =1,
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The minimum energy spacing still tends asymptotically to zero as the total number of atoms,
N; = N13, becomes large, but now only as the 2/3 power of the total number of atoms.
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3. An Exciton Example

Theillustration of 82 has considered only the vibrational (phonon) modes. There may be
other degrees of freedom which result in smaller energy level spacings. This might happen,
for example, if the atoms/molecul es have an accessible excited state, and these excited states
can mutually interact. In such cases the interaction can break the initial N-fold degeneracy
resulting from the possibility that an excitation could be located of any of the N atoms. The
weaker the interaction, the closer are the resulting split levels. Consequently very close
energy levels must be regarded as a generically common. Moreover, as we shall now show,
even if the interaction is strong, the minimum eigen-energy spacing tends to zero rapidly as
N becomeslarge.

Consider a system comprising N particlesin aline. Each particle has two energy states,

energy O or E . The Hilbert space of this system is of dimension 2N . However, we suppose
thereisinsufficient energy available to excite two or more particles to their higher energy
state, but sufficient to excite asingle particle. In this N dimensional sub-space the
Hamiltonian in the energy basisis simply the N x N diagonal matrix with diagonal elements
al equal to E . Any N dimensional vector is an eigenvector because thisis an N-fold
degenerate energy level. However we will take the basis to be defined by which particleis
excited. We now introduce an interaction between nearest heighbours only consisting of a
potential energy A . The Hamiltonian therefore becomes,
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(H)=l0 0 A E A 0 O (6)
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(illustrated herefor N = 7). The interaction between the particles breaks the degeneracy, the
perturbed energy levels being given by the solutions to the secular equation,



E-1 A 0 0 0 0 0
A E-1 A 0 0 0 0
0 A E-1 A 0 0 0
IH-4]=| o 0 A E-2 A 0 0 [=0 (7
0 0 0 A E-1 A 0
0 0 0 0 A E-1 A
0 0 0 0 0 A E-2

(again illustrated here for N = 7). The easiest means of solving (2) is numerically using the
proprietary matrix manipulation software of your choice. However, it isfun to do these things
analytically asfar as possible. Using the substitution,

x=(E-1)? 8
and denoting the secular determinant as |N||, it is readily seen that,
INJ = VXN -1] - A%|N - 2f 9

Hence the secular equations are found to reduce to,

N Secular Equation for the Energy L evels

2 X—A%2 =0

3 x=0or x—2A%=0

4 X% —3A%x+A* =0

5 x=0or x?—4A’x+3A* =0

6 x3 —5A%x? + 6A*x—A® =0

7 x=0or x> —6A°x? +10A*x-4A° =0

8 x* —7A%x3 +15A%x2 —10A%x + A% = 0

9 x=0or x*—8A%x3 + 21A%x? — 20A°x +5A% = 0
10 x> —9A%x* + 28A%x3 —35A°%x? +15A%x - A1 = 0

The x =0 solutions give 1 = E whereas the n" order polynomialsin x have n positive roots
X, which provide 2n energy levels A =E + \/Z . Relativeto the mean energy E , andin
unitsof the interaction strength A , the energy levels are,

N (A-E)/IA Minimum Spacing
2 +1 2
3 —/2,04/2 V2
A e =R SO :

2 2 2 2
5 ~J3, -1,0,+1, +/3 J3-1
6 -1.802, -1.247, -0.445, 0.445, 1.247, 1.802 0.5549
7 -1.8478, -1.4142, -0.7654, 0, 0.7654, 1.4142, 1.8478 0.4336
8 -1.8794, -15321, -1, 0, 1, 1.5321, 1.8794 0.3473
9 +1.90211, +1.61803, +1.17557, +0.61804, 0 0.28408
10 +1.91899, +1.68250, +1.30972, +0.83083, +0.28464 0.23649




The last column gives the smallest spacing between adjacent energy levels, which in every
case is between the lowest excited state and the second lowest: E, - E; =4, — 4.

Numerical evaluation of the eigenvaluesisthe simplest means of continuing, and this gives
the reducing minimum energy spacing to be,

N Minimum Spacing/ A
11 0.19980
12 0.17097
13 0.14792
14 0.12920
15 0.11381
16 0.10100
17 0.09023
18 0.08109
19 0.073263
20 0.066516
25 0.043534
30 0.030679
35 0.022774
40 0.017571
50 0.011366
75 0.0051225
100 0.0029014

The minimum energy spacing is plotted against N in Figure 1 (up to N = 10) and in Figure 2
(up to N =100) and finally in Figure 3 (up to N = 100 but on log-log scales).

The energy spacing is clearly asymptotic to zero as N increases. The slope of the log-log plot
of Figure 3 suggests that the asymptotic behaviour is that the minimum spacing decreases

oc % . How can this be proved analytically?

The presence of this sort of “exciton” behaviour will therefore tend to promote very rapid
decoherence for large N.

4. The 1D Line of Atoms Revisited

We return briefly to the 1D problem addressed in 82: aline of atoms interacting through a
guadratic potential between nearest neighbours (whose limit is the elastic continuum).
Denoting the displacement of thei™ atom of mass m as X; , the classical equations of motion,

assuming a spring constant « between each pair of atoms, are,

My = i — k(% = %) (104)
My = —k(Xp — X1 ) — &(Xp — X3) (10b)
Mg =~k (X3 — Xp ) — x(Xg — X4 ), €tC. (10c)

The classical natural frequencies are therefore given by @, = /4, - @g, where oy =vx/m
and A, arethe roots of,



2-2 -1 0 0 0 0 0
-1 2-2 -1 0 0 0 0
0 -1 2-2 -1 0 0 0
0 0O -1 2-2 -1 0 0 [=0 (11)
0 0 0 -1 2-2 -1 0
0 0 o 0 -1 2-2 -1
0 0 0 0 0 -1 2-2

(illustrated for the case N =7). But (11) is of the same form as (7). So we know already that
the asymptotic behaviour of the A,, isthat the minimum spacing obeys,

1

LIM N> M«min=iz—/hocm (12
So we have,
ABpin =Bz - El—(\/_ \/_)foo—a’o 41{\/%—} wox/_{ 1+ Nz, }
(13)
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The last step follows because the energy levelsin 1D are proportional to L o W (this

follows from Equ.(1) and also from the numerical solution in 83). Consequently, the lowest
energy eigenstate, n, =1, is proportional to 1/ N . Hence (13) reproduces the continuum result

of 82, i.e., that the élastic line of atoms has a minimum energy spacing which reducesin
inverse proportion to N.

5. The Exceptions are of Greater Interest

Obviously one cannot conclude anything rigorous or universal from afew very smple
illustrations. The purpose of these examples has been only to make plausible the claim that
‘big’ objects will most often tend to have some very closely spaced eigen-energies, and hence
be susceptible to very rapid decoherence. In this context ‘big” means only that N >> 1, so that
afew tens of degrees of freedom might be ‘big’.

However, it would be a mistake to think that macroscopic quantum phenomena were
impossible. Superfluidity, superconductivity and Bose-Einstein condensation are all examples
of essentially quantum phenomena, involving sustained coherence, which are observable on
the macroscopic scale. One of the key features which permit these phenomenato ariseisthe
existence of energy gapsin their spectra. s this true????
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