
Why Are Big Things Classical? 

Why does decoherence happen very rapidly for objects with large numbers of 
degrees of freedom? 

Last Update: 8/10/11  

1. What is the Problem? 

Decoherence, via interaction with the environment, causes the density matrix of a system to 
become diagonal in a particular basis called the pointer basis. The simple example in Chapter 
? has illustrated that the pointer states of a system approximate to its energy eigenstates if its 
energy level spacings are large compared with the energies characterising the interaction with 
the environment. Decoherence naturally einselects the energy eigenstates in this situation. The 
energy eigenstates are usually spatially delocalised and hence delocalisation is the natural 
condition in such a case. An example is the state of an atomic, or molecular, electron.  

On the other hand, macroscopic objects tend not to be in delocalised states. They tend to be in 
classical states in which energy is localised. Why is it that being big causes this? To be 
consistent with the decoherence programme, big things must tend to have very closely 
spaced energy levels  so that even an extremely weak interaction with the environment will  
decohere them away from their pure energy eigenstates. Accordingly, this Chapter provides 
some simple illustrations of how very close spacing of energy levels often arises naturally 
when the system s number of degrees of freedom is large.  

Although this helps to explain why classical behaviour is typical for big things, the 
exceptions to this rule are extremely important  see §5. 

2. The Continuum Field Limit 

Consider a lattice consisting of a large number of bonded atoms  sufficiently many that we 
may treat it approximately as an elastic continuum. Phonons with wave-vector k  are 
associated with an energy  and in the long wavelength limit we can consider the almost-

continuum to have a constant velocity of sound, sv , such that kvs . Hence  can be 

regarded as the approximate eigen-energies where the eigenstates are given by,     
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where we have assumed a cube of material of side L  and 1N  atoms per side, hence with 

lattice spacing 1/ NLa . In (1), the quantum numbers zyx nnn ,, take the values 1, 2, 3 

to a maximum of 1N . In a true continuum the quantum numbers could be arbitrarily large, but 
for a discrete lattice the number of classical natural frequencies is limited to the number of 
degrees of freedom.  

Considering a 1D line of atoms the energy spacing is thus,     
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The energy level spacing decreases asymptotically to zero for large numbers of atoms in 
inverse proportion to the number of atoms in the line, 1/1 N .  

If we consider a 2D square array of atoms, the minimum energy spacing is obtained as the 
difference of (1), evaluated at 1xn , 1Nny  and 2xn , 1Nny , giving, for large 1N ,     
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where 2
12 NN  is the number of atoms in the square array. Hence the result is the same as 

for the 1D case: the minimum energy level spacing reduces asymptotically to zero in inverse 
proportion to the total number of atoms.  

For the 3D case we get, using 1xn , 1Nny  and 1Nnz , and 1xn ,     
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The minimum energy spacing still tends asymptotically to zero as the total number of atoms, 
3
13 NN , becomes large, but now only as the 2/3 power of the total number of atoms.  

3. An Exciton Example 

The illustration of §2 has considered only the vibrational (phonon) modes. There may be 
other degrees of freedom which result in smaller energy level spacings. This might happen, 
for example, if the atoms/molecules have an accessible excited state, and these excited states 
can mutually interact. In such cases the interaction can break the initial N-fold degeneracy 
resulting from the possibility that an excitation could be located of any of the N atoms. The 
weaker the interaction, the closer are the resulting split levels. Consequently very close 
energy levels must be regarded as a generically common. Moreover, as we shall now show, 
even if the interaction is strong, the minimum eigen-energy spacing tends to zero rapidly as 
N  becomes large. 

Consider a system comprising N  particles in a line. Each particle has two energy states, 

energy 0 or E . The Hilbert space of this system is of dimension N2 . However, we suppose 
there is insufficient energy available to excite two or more particles to their higher energy 
state, but sufficient to excite a single particle. In this N dimensional sub-space the 
Hamiltonian in the energy basis is simply the NN  diagonal matrix with diagonal elements 
all equal to E . Any N dimensional vector is an eigenvector because this is an N-fold 
degenerate energy level. However we will take the basis to be defined by which particle is 
excited. We now introduce an interaction between nearest neighbours only consisting of a 
potential energy . The Hamiltonian therefore becomes, 
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(illustrated here for 7N ). The interaction between the particles breaks the degeneracy, the 
perturbed energy levels being given by the solutions to the secular equation, 
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(again illustrated here for N = 7). The easiest means of solving (2) is numerically using the 
proprietary matrix manipulation software of your choice. However, it is fun to do these things 
analytically as far as possible. Using the substitution,     

2Ex      (8) 

and denoting the secular determinant as N , it is readily seen that,     
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Hence the secular equations are found to reduce to, 

N Secular Equation for the Energy Levels 
2 02x 

3 0x or 02 2x 

4 03 422 xx 

5 0x or 034 422 xx 

6 065 64223 xxx 

7 0x or 04106 64223 xxx 

8 010157 8624324 xxxx 

9 0x or 0520218 8624324 xxxx 

10 01535289 1082634425 xxxxx 

 

The 0x  solutions give E  whereas the nth order polynomials in x have n positive roots 

rx  which provide 2n energy levels rxE . Relative to the mean energy E , and in 

units of  the interaction strength , the energy levels are, 
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6 -1.802, -1.247, -0.445, 0.445, 1.247, 1.802 0.5549 
7 -1.8478, -1.4142, -0.7654, 0, 0.7654, 1.4142, 1.8478 0.4336 
8 -1.8794, -1.5321, -1, 0, 1, 1.5321, 1.8794 0.3473 
9 90211.1 , 61803.1 , 17557.1 , 61804.0 , 0 0.28408 

10 91899.1 , 68250.1 , 30972.1 , 83083.0 , 28464.0

 

0.23649 

 



The last column gives the smallest spacing between adjacent energy levels, which in every 
case is between the lowest excited state and the second lowest: 1212 EE .  

Numerical evaluation of the eigenvalues is the simplest means of continuing, and this gives 
the reducing minimum energy spacing to be, 

N Minimum Spacing / 

 
11 0.19980 
12 0.17097 
13 0.14792 
14 0.12920 
15 0.11381 
16 0.10100 
17 0.09023 
18 0.08109 
19 0.073263 
20 0.066516 
25 0.043534 
30 0.030679 
35 0.022774 
40 0.017571 
50 0.011366 
75 0.0051225 

100 0.0029014 

 

The minimum energy spacing is plotted against N in Figure 1 (up to N = 10) and in Figure 2 
(up to N = 100) and finally in Figure 3 (up to N = 100 but on log-log scales).  

The energy spacing is clearly asymptotic to zero as N increases. The slope of the log-log plot 
of Figure 3 suggests that the asymptotic behaviour is that the minimum spacing decreases 
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. How can this be proved analytically? 

The presence of this sort of exciton behaviour will therefore tend to promote very rapid 
decoherence for large N.  

4. The 1D Line of Atoms Revisited 

We return briefly to the 1D problem addressed in §2: a line of atoms interacting through a 
quadratic potential between nearest neighbours (whose limit is the elastic continuum). 
Denoting the displacement of the ith atom of mass m as ix , the classical equations of motion, 
assuming a spring constant  between each pair of atoms, are,     
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32122 xxxxxm

   

           (10b)     

43233 xxxxxm , etc.             (10c) 

The classical natural frequencies are therefore given by 0nn , where m/0

 

and n  are the roots of, 
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(illustrated for the case 7N ). But (11) is of the same form as (7). So we know already that 
the asymptotic behaviour of the n  is that the minimum spacing obeys, 
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So we have, 
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The last step follows because the energy levels in 1D are proportional to 
N

n

L

n xx  (this 

follows from Equ.(1) and also from the numerical solution in §3). Consequently, the lowest 
energy eigenstate, 1xn , is proportional to N/1 . Hence (13) reproduces the continuum result 
of §2, i.e., that the elastic line of atoms has a minimum energy spacing which reduces in 
inverse proportion to N.  

5. The Exceptions are of Greater Interest 

Obviously one cannot conclude anything rigorous or universal from a few very simple 
illustrations. The purpose of these examples has been only to make plausible the claim that 
big objects will most often tend to have some very closely spaced eigen-energies, and hence 

be susceptible to very rapid decoherence. In this context big means only that 1N , so that 
a few tens of degrees of freedom might be big .  

However, it would be a mistake to think that macroscopic quantum phenomena were 
impossible. Superfluidity, superconductivity and Bose-Einstein condensation are all examples 
of essentially quantum phenomena, involving sustained coherence, which are observable on 
the macroscopic scale. One of the key features which permit these phenomena to arise is the 
existence of energy gaps in their spectra. Is this true????   
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Figure 2 
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Figure 3 
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