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Summary

It is shown that cylinders can wear against each other or against flats
in only a very few ways, each of which can be defined geometrically. For
each geometry the volume of any intersection varies with a few easily
measured dimensions. When dealing with a wear scar on a tube it is relatively
easy to relate the volume already lost as a fraction of the volume that must
be removed before any particular depth is reached. The results are presented
graphically so that calculations can be reduced to a minimum and the results
made as widely applicable as possible.

The methods developed here have already been employed to predict
the lifetimes of irreplaceable tubes showing wear scars. Amongst other
possible uses of these methods, one discussed in this paper is a better way of
calculating specific wear rates in wear testing using crossed cylinder geom-
etries.

1. Introduction

Vast numbers of tubes exist, for example, in heat exchangers, where the
transfer of heat is facilitated by turbulence within the fluid media. Turbulence
leads to tube motion, often resulting in fretting or impact wear of the tubes
whenever they make contact with the following solid bodies within the shell
side: other tubes; steadies; brackets; the shell wall etc. as Ko [1] has described.
The fluid flow tends to remove loose wear products from the active sites and
may allow wear to proceed unabated or until contact is lost.

This paper shows that the vast majority of the multitudinous possible
interactions of tubes, or any cylindrical section, with each other or with flat-
sided bodies, can be reduced to a few relatively simple cases which can each
be defined geometrically in a general way. These general cases can be simply
used in many practical applications to show the amount of tube life expired.
It is equally possible to use the same expressions to predict the size of wear
scars for particular contact conditions; although here essential information
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may often not be available. Although the approach adopted is directly
applicable to the wear of tubes, other cylindrical bodies such as bolts and
stays are included in the analysis. Throughout this paper wear is defined as
the common volume of the intersection of geometric shapes; volume removal
rates are taken as being invariant with time. Nowhere are definite statements
made about real wear rates: the purpose of the document is to show how
geometric considerations allow many problems to be bounded perhaps more
rigidly than might be expected.

2. Tube sections with scars having a straight base

The cross-section of a tube is an annulus (Fig. 1). If the tube has a scar
with a straight base the depth of the scar H can be determined from the scar
width C, perpendicular to the plane of the tube axis, and the tube’s external

diameter 2r. The quantities are related thus
cc

— — =H(2r—H)

2 2

or

C = 2{H(2r — H)}'/? (1)

_2rz (4r2—Cc*Hi2
2
the larger root is the remaining ligament case.

[4
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Fig. 1. Flat-based scar types.
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Now for any tube there will be a critical scar depth; if the scar becomes
deeper the tube will leak. For some cases the unsupported part of the scar
base will be relatively insignificant in structural terms and often it may be
sufficient to equate the critical scar depth with the tube wall thickness. For
very long scars the maximum hoop stress may limit the scar depth. In condi-
tions where creep is important the rate of wear will also affect the determina-
tion of a critical scar depth. Since it is normal to know the radius and wall
thickness of the tube the critical scar width can, in principle, always be
obtained from the relevant material properties. Conservatism may require
the critical depth to be defined by the occurrence of significant plastic or
creep strains in the ligament causing distortions of the tube cross-section
away from the perfect circle assumed. Likewise the manufacturing process
may produce oval tubes: this may be countered by regarding the tube as
being of smaller radius. .

Scar widths are usually much easier to measure than scar depths and the
relationship above shows that even very shallow scars are relatively wide.
Having a straight baseline does not define the scar in three dimensions. Three
separate regular cases should be considered.

The first case is a simple flat-based scar (¥ig. i(a)) whose cross-section
is either invariant or bounded by discontinuities. In such a scar the affected
tube length does not vary with scar depth. A thin hard straight edge or a flat
unwearing rectangle whose face is parallel to the tube axis could produce
such a wear pattern; as would the rubbing together of two equally wearing
parallel similar tubes.

The second case to be considered is where the cross-section of the scar
base in the line of the tube axis is itself part of another circle of any radius
(Fig. 1(c)). Such a shape could be produced by the intersection of two
cylinders at right angles. The relationship between scar depth and length is
determined by a form similar to eqn. (1).

The third case is the tapered scar, one which ‘runs out’ as in Fig. 1(b).
Such a scar could be produced by a wear-resistant rectangular block whose
face is angled to the tube axis. In this case there would be an invariant
relationship between scar depth and length. Other regular scar geometries
exist but are unlikely to result from the ‘interactions of cylinders or of a
cylinder and a flat.

2.1. The simple flat-based scar
This, the simplest scar, has a cross-sectional area A defined by the
expression

A=r2arccos( )—(r—H){rZ—(r——H)z}”2 (2)
The volume removed is the product of the length (a constant) and the area.
This enables the relative volumes of scars to be easily determined. Most
useful is the ratio of a measured scar area to that of the area at the critical
scar depth. A graphical representation of eqn. (2) is given in Fig. 2 where the
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area of any segment of width C/r is given with respect to the area when the
scar width equals the diameter, i.e. with respect to 7r2/2 or r? arccos 0. The
critical value of H/r gives a corresponding value of A (eqn. (2)) at the same
C/r. From a measured scar width the value of A is read from the same line.
Both are expressed relative to nr2/2, so the ratio of the actual scar area to
the critical scar areas can be found simply. If the volumetric wear rate is
assumed constant then this ratio is the fractional life expired. An example
of this technique is given in Section 5.1.

2.2. The cylindrical intersection scar
The intersection of a tube of radius r; by another of radius r, at right
angles is shown in Fig. Al in Appendix A. The derivation of the volume
of intersection V is given in Appendix A. Both a numerical and an
approximate integration are given. The latter, eqn. (A8), gives
V=1rH2(r1r2)1/2(1— E - £) (3)
8ry 8ry

The errors in this expression are shown in Fig. A3 in Appendix A. Consider-
ing the assumptions made, the expression is remarkably accurate for H <ry
and r, and the extent of the inaccuracy is very little affected by the relative
sizes of ry and r;.

Thus a single line, II on Fig. 2, shows the progress of all such inter-
sections with very little error. This line, intermediate between lines I and II1
at all points, is the result of the more precise numerical integration of eqn.
(A5) in Appendix A.

The volume given in Fig. 2 as 100% is based on the diameter since inter-
section scars are asymmetric when H > r; or r, and r, < 2r. The geometrical
intersection then differs from a wear scar; the volume, when r,=r, = H, is
2.323r3, ’

The same line in Fig. 2 is of more use than just relating the relative
wear of crossings at 90°. Appendix A shows that it also applies to straight
tubes crossing at any angle 8 for which
V ~ wH? cosec 8(r,r,)'? (1—— H_ £) (4)

8r, 8ry

As cosec 0 is a constant, the line II in Fig. 2 also represents the progress of
wear through tubes which cross each other at any angle. The exact measure-
ment of C can become awkward if 0 approaches zero as Fig. A4 shows.
The same line can also be used for the intersection of bent tubes, although
the exact relationship looks rather different (Appendix A).

2.3. The tapered base scar
The cross-sectional area of such a scar at any point has the form of
eqn. (2) but the depth varies along the scar length. If X is the scar axial
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length from a depth of zero to H, the relationship X/H is constant and equal
to the cotangent of the scar angle 6. Appendix B shows how the expression
for the volume of the scar can be determined

r—H

V=cot 6(r2[{r2 — (r — H)?}?2— (r — H) arccos

rd %1 (r—H)2%3/2> (,—)
— —{1— 5)
3 r
for the part ‘A’ of Fig. 1(c). Part ‘B’ has a similar form but instead of cot 0
has, for an unwearing rectangular counterface, cot(90 — 0) or tan 6 by the
term in the major parentheses.

If the scar volume at any depth, as determined from the scar width, is
compared with the volume of a scar whose width is equal to 2r

V=2r3cot § +tan 0)

then the line I on Fig. 2 results.

For a given volume of material removed in a fixed scar length the
tapered scar shows the greatest maximum depth of penetration, the simple
flat-based scar the least. However, the tapered scar may well have a greater
critical depth as the minimum ligament is localized.

3. Application of the wear geometries

The three general eqns. (2), (4) and (5) between them cover the types
of interactions likely to be found in practice but the application of the lines
in Fig. 2 needs some care. The factors which should be considered are that
tubes are not necessarily straight and that the bases of scars are not always
flat.

3.1. Bent tubes

Figure 8 shows a tube of radius r; intersected by another of radius r
bent around a radius r,. The volume of the intersection at any depth H has
already been expressed in terms of r; and r, if the angle 6 between the tube
axes in plan is zero. For H small compared with r, the volume at a given
depth is proportional to (r;)/% Hence line II in Fig. 2 is robust in that the
progression of wear volumes in two other cases can be plotted by its use.
Firstly, it does not require r, to be known; secondly, it may be used when
r, is not constant. This latter case is of use when 8 is not zero, so that the
intersection is a chord of an ellipse, or for vibrating or thermally bent tubes
whose bends are not strictly parts of any circle.

Obviously, the tube of radius r; may also be bent but the value of r,
can be calculated from the difference in the reciprocals of the radii of the
contacting bends. If r, is needed a derivation based on scar length is given
in Section 3.2.2.



337
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2

Hy = 2 -VarZ - C2
2

Fig. 3. The concave-based scar.

3.2. Scars with concave bases

In many instances the bases of scars will not be flat. If two parallel
tubes rub the equality of wear rates needed to produce truly flat scars must
be fortuitous. One tube will almost certainly wear less than the other and the
extreme case is observed when one tube shows no wear. In such a case Fig. 3
shows that the base of the scar is concave with a radius equal to that of the
wear-resistant tube and hence for tubes of equal radius the depth is exactly
twice that which would be anticipated from the previous analysis.

3.2.1. Concave-based simple scars

The analysis of such scars is still simple, it is only necessary to replace
the critical value of H/r with one which is one half the size and from this
read off the associated values of C/r and the equivalent percentage volume.
Although nominally similar tubes should have nominally similar wear rates
we can be confident of scars being no worse than this analysis shows. If the
unwearing tube has a smaller radius the resulting scar will be deeper but,
nevertheless, the maximum scar depth can always be determined from the
tube radii and the scar width.

3.2.2. Concave-based intersection scars
Similar reasoning enables concave-based intersections to be considered
since bent tubes may cause concave-based scars on straight tubes. Figure 3
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shows the intersection of a straight tube of radius r; by a tube of radius r,
which is itself bent in a radius of r,. From C the depths of each part of the
scar, A and B, can be obtained. If each part of the scar has depth H, and Hj
respectively (from Fig. 3) the total depth of the intersection, H = H, + H;,
is given from the scar length L and r, thus

L? H,+H,

" E v Hy) 2 (6)
when r; = 1, as will often be the case, H, = H,

r, L*+16H?

n 2C?+8H?

or (7
r, L?

ro 2c?

Although the area of part A is independent of r; and the area of part B is
independent of r;, the volumes of each part are interdependent as Appendix A
shows. Although the volume is in two separate parts, to a close approxima-
tion it can be regarded as having the same form as line II in Fig. 2.

It is difficult to envisage a practical situation in which two cylinders
can give a concave-based taper scar since it requires the extrapolated axes to
pass through each other. A kinked tube wearing against a straight one might
produce such an effect. Nevertheless, the application of the principle remains
identical.

3.3. Convex-based scars

Straight-based scars may be caused by the interactions of cylinders
which wear against plane surfaces which do not. Practically, wear will occur
on both surfaces giving the cylinder a convex scar base. Figure 4 shows the
result of the interaction of an equally wearing cylinder and flat. The radius
of the base of the scar is shown to be 2r — 3H/4. It is doubtful whether real
scars could be measured to the accuracy necessary to observe this relation-
ship. None the less, it can be designated as the ‘most likely’ case for the
interaction of a cylinder and flat; the straight base is the worst case. In the
convex-based scars the depth is always less than that expected from eqn. (1).

If a tube is known to be wearing against a flat, and both have similar
wear properties, then the most likely scar will have a depth one half of that
given in the analysis leading to eqn. (1) and the evaluation of an individual
scar proceeds by assuming a critical value of H/r twice the real value.

4. Application to wear rate testing by crossed cylinder methods

Irrespective of the geometry of the wearing pair, the distribution of
wear cannot be measured without taking the pair apart. Nevertheless, the
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Fig. 4. The convex-based scar (&, area worn away).

total wear can be determined from the change in height of two wearing
objects of known geometry. For equally wearing crossed cylinders of equal
radius the saddle-shaped wear scar of indeterminate radius has a volume half
that of the simple intersection. This saddle is the rotation of the flat-based
simple scar through 90° just as rotation through 90° of the concave-based
parallel tube scar gives the flat-bottomed intersection scar.

In wear tests it is not uncommon to study the fretting of crossed
cylinders since alignment problems are eliminated. Wear is often determined
by very accurate weighing or careful multiple profilometer traces which
provide a pseudo three-dimensional image. Since V « H?, the mass loss Vp
(where p is the density) is of second order in the small quantity H and so it is
better to measure H directly. The expression derived in Appendix A and an
example here demonstrate the sensitivity of the method.

If two crossed cylinders of 5 mm radius are discovered to have fretted
so that their total height has reduced by 10 um, the volume removed can be
determined most easily from the expression given in Appendix A
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0.01  0.01
V =m(0.01)2(5 X 5)1/2 (1 - -—) =15.7 X 10~ mm?
8X5 8X5

if p =8 mg mm™ this is equivalent to a mass loss on the combined cylinders
of 12 ug. Such a mass loss may probably not be accurately determined from
weighing and might be difficult to measure accurately from profilometer
traces. This technique presumes that wear is the volume of material displaced.
The corresponding scar width is 0.63 mm or more if debris were retained in
the contact. Transferred material can affect both the scar widths and the
changes in height. However, the use of the geometric relationships is probably
no less accurate than profilometry and rather simpler. If the two cylinders
are of different materials the individual wear rates cannot be obtained for
each quite so easily.

5. Examples of wear estimation based on scar width

5.1. The evaluation of straight-based scars

Since three of the four lines on Fig. 2 purport to cover all the wear
volumes of scars with straight-based sections orthogonal to the axis of the
cylinder it is useful to refer to the graph for a practical example. Suppose a
tube of 50 mm radius has a critical scar depth of 10 mm. Then the critical
value of H/r=20%, at which depth C=1.2r. At this point the relative
volumes, as given by the lines I, II and III, are 10.5%, 5.2% and 1.95%
respectively. If a scar is noted to be 25 mm wide, ie. C=0.5r, then the
depth of the scar is 3.2% of the radius or 16% of the critical depth. The
volumes removed are 0.7%, 0.125% and 0.02% respectively of the diametral
scars; equivalent to 6.6%, 2.4% and 1% of the volumes to breakthrough in
each case. This information results solely from measuring the scar width and
deciding on the geometry of the interaction. This in itself is relatively
straightforward since type I scars have constant widths along their lengths or
are produced by actions of thin edges against tubes. Type II scars will be
widest in the middle and run out either end. Type III scars will normally be
obviously at their widest very close to one end.

As already noted, limits can be put on the severity of scars dependent
upon their causes. Thus the figures shown above are the worst that could
result from the interaction of a flat with the tube (types I and III) or another
tube (types I and II). However, the straightforward use of Fig. 2 implies that
the volumetric wear rate remains constant. It is quite conceivable that two
tubes will wear out of contact before penetration: in that case the wear has a
finite limit. It is also possible that the wear rate will not be constant, even if
all the parameters governing it remain steady, as Aldham et al. [2], amongst
others, demonstrate. Generally, wear rates and contact loads, if they vary at
all, decrease as wear progresses, so the assumption of volumetrically constant
wear rates will provide a built-in pessimism. Wear can also affect the dynamic
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response of the tubes and so change the wear rates. Such a change is not
easy to predict but in many cases the dimensional changes which take place
before the tube fails will be quite minor.

It is instructive to note that quite wide scars can be very shallow (see
Fig. 2): a scar of width 0.3 of the radius is but 1% of the radius deep and the
proportionate volumes associated with type I scars are an order of magnitude
down on this, type II an order of magnitude less than type I and type III
similarly less than type II. Yet such a scar would be 15 mm wide in the
example and hence be clearly visible.

5.2. Curved base scars

As mentioned in Sections 3.2 and 3.3, the shape of a scar base is likely
to differ from a flat depending on how the scar was formed.

If two similar tubes are wearing through each other then in theory the
scar could be twice as deep on one tube as the width would imply. In the
example used above the analysis proceeds simply by putting the critical value
of H/r at 10%, i.e. C/r=0.88. Line I is then at 4%. The simple 25 mm scar
has thus consumed 0.7/0.04 or 17.5% of the tube life and so on for the other
scar types. This then demonstrates the upper bound of such a scar although
the flat-based scar is the most likely case for two tubes clashing.

The most likely result of a flat wearing against a tube is the convex-
based scar. If equal wear rates can be assumed the critical value of H/r in this
case can be put at 40% when C = 1.6r. The simple scar has then 29% of the
volume of the diametral scar and at C/r = 0.5, 0.7% of that volume. The
most likely value then becomes 0.7/0.29 or 2.4%. The other scar types are
dealt with similarly.

5.3. Truncated taper scars

Many taper scars may be of low angle owing to inaccuracies in
manufacture, e.g. a bracket face notionally parallel to the tube axis. This will
give scar lengths relatively enormous compared with the depth but the taper
cannot continue unabated; before it wears through, the whole of the bracket
width will be wearing into the tube and a truncated taper will result. If the
bracket width; if 16% of the critical depth has been penetrated in 50% of the
width, then the scar will truncate when it becomes more than 32% of the
critical depth. At breakthrough the volume removed can be represented as
equivalent to a whole taper, less that of the unworn piece 68% of the depth.
Looking at Fig. 2, for H/r critical at 20%, the volume is equivalent to 1.95% of
the diametral volume. The volume of the “tail” of the taper, from 68% of H/r
Fig. 2, for H/r critical at 20%, the volume is equivalent to 1.95% of the
diametral volume. The volume of the “tail” of the taper, from 68% of H/r
critical to zero depth, is 0.75% of the diametral volume. Hence the volume
of the truncated taper is 1.2%. In the original example 0.02% has’ been
removed; only one sixtieth of the volume to breakthrough.
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6. Wear scar predictions not based on scar width

The analysis so far has relied upon measuring scar widths, assuming a
likely wear geometry and obtaining the relative amount of wear that has
taken place with respect to the amount of wear needed to cause tube failure.
By this means the assumption of a volumetrically constant wear rate can be
used to predict service life. Another approach is also possible; if wear tests
and a knowledge of the likely conditions can be used to predict the volume
of wear that will take place in service, the expressions derived can be invoked
to show whether penetration will take place. Some simple examples follow
which illustrate possible uses of the relationships.

6.1. Example 1

Consider the 50 mm radius 10 mm tube referred to previously. Predic-
tions based on wear rates and energy inputs suggest that it may lose as much
as 10* mm? in volume by wearing against a rectangular bracket angled at 3°
to the axis of the tube. How deep and wide will be the scar?

When H = r the volume V =2 r3(cot 6 + tan 6), at 3°

cotf +tan 6 ~ 20
1% 3 x10%

= 3 =6X1073=0.6%
Vier=r 2X50°X 20
from Fig. 2
C
— =097, .. C=48.5 mm
r
H
— =12%, . H=6 mm
r

6.2. Example 2
The tube passes close to a wear-resistant division wall which is very

long. If we expect that the tube may lose 10° mm?® owing to wear, how
accurately must the tube run be constructed to prevent breakthrough?
From Fig. 2

H=02r
V' =0.0195 X %r3 cot 8
10°x 3
. cot @ =61.54

503X 0.0195 X 2
i.e. 0 ~1° so arun which is accurate to 1° will suffice.

6.3. Example 3
In a heat exchanger a tube is bent against the effectively flat wall
(Fig. 5). If the tube radius is 10 mm, the wall thickness 2 mm, the tube run
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Fig. 5. Example 3.

10 mm and the wall at 20 mm from the tube axis, how much material is
removed from the tube at breakthrough?

It is best to visualize the shape of the intersection by imagining the shell
wall wears and not the tube and considering that breakthrough occurs when
the intersection becomes 2 mm deep.

At breakthrough, the deflection of the tube axis will be 12 mm. Hence
the radius of the bend will be

c? H 10°

+6=10420 mm

r= — J—

8H 2 8X12

Since the wall of the heat exchanger is effectively flat r; = o and so the
volume of the intersection is given by eqn. (A12) in Appendix A. In this case
ry=r,* =10420 mm and r3 = 10 mm. The wear volume is then

2
V= [w{h?(2r;—h)(2r,* —h)}'"* dn
0

which gives V = 3918.5 mm?.
Although eqn. (3) is not strictly applicable, the value of the expression
with the same values of r,*, r3 and H = 2 gives 3953 mm?, less than 1% different.

6.4. Example 4

Through the centres of two faces of a cube are drilled holes of radius r
so they pass through each other. What is the common volume of the inter-
section?

The volume of the intersection can be represented in the following two
equivalent ways: one is as shown in Appendix A; the other can be best
visualized as the intersection of four equal radii rods into a cross. To make
them fit exactly, each rod would have removed from it two tapered cuts
each at 45° to the surface (see Fig. 6).

The volume of any such taper is, from eqn. (5), putting H=r

- 3 (p—p\2)3/2
V=C°t%(rz[{rz_(r—r)z}”z—(r—r)arccos(%)]—~—r——gl—(r r)% )

3 r

3

r

it
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Fig. 6. Example 4.

As there are eight such tapered pieces the volume of the intersection equals
16 .3
37

This value may be used to check the accuracy of any numerical integra-
tion of eqn. (A5) in Appendix A.

6.5. Example 5
Two crossed cylinders of the same material, each of radius 5 mm, are
fretted under a load of 100 N for 10° cycles at 10 um overall stroke. The
height of the cylinders falls by 25 um. What is the wear rate of the material?
From eqn. (3) the volume of the intersection is

25
V =70.025%(5 X 5)1/2 (1— ——)
1000 X 4 X 5

=98 X 1072 mm?

=98X107 1?2 m3
10° cycles at 10 um = 20 m sliding distance.
. 1 9.8x10712
. wear rate of materjial = — X —————
2 100 X 20

=25X10 5 m3N"1m!

7. Inappropriate cases

Implicit in all the foregoing analyses is the assumption that wear, and
hence relative movement, proceed in a predictable way until the critical
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value of H is reached. This requires that the body which causes tube wear
is of sufficient dimensions to accommodate a full chord. Then the actual
direction of the force is irrelevant since the only direction which would
cause the analyses to be undermined is when the force is parallel to the base
of the chord; a case in which wear has a finite limit. If the cross-section of
the scar is not a full chord, with or without a curved base, gouging arises and
then the direction of the force becomes important. As such a direction could
probably not be measured easily, and certainly cannot be determined from a
single scar measurement, there is no general solution.

8. Conclusions

Scars on cylinders due to other cylinders or flats can be divided into the
following three main types: simple; taper; intersection. Each type shows a
different relationship of volume to width or depth: with steady wear rates
simple scars progress most rapidly in terms of depth, taper scars most slowly.
Conversely, for a fixed length and volume removed, taper scars are the
deepest and simple scars the shallowest. Within these types it is possible that
the base can be flat, concave or convex. Choice of scar type depends upon
the assumptions made about the wearing geometry. None the less, it only
requires the four lines in Fig. 2 to analyse scars of all types from aknowledge
of the tube diameter, wall thickness and scar width. It is also possible to
determine the maximum value of the wear by the simple measurement of the
change in height of the wearing pair. The relationships can also be employed
to predict scar dimensions from estimated total wear volumes assuming any
particular geometry.

TABLE 1
Application of base types

Main scar Flat Concave Convex
type
Simple Unwearing flat parallel to  Parallel tubes, one wear Wearing flat parallel
tube axis resistant to tube axis
Parallel equally wearing
tubes

Thin sawing actions

Taper Unwearing non-parallel Non-parallel wearing
flat on tube flat on wearing tube

Intersection Crossed cylinders, one Unwearing bent tube Two wearing crossed
wear resistant on wearing straight cylinders

Bent tube on straight,
equally wearing

Bent tube sweeping
across straight tube axis
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The uses of the various relationships derived are wide ranging. The
intersection case, for example, has use not only for cylinders crossed at 90°,
provided material transfer is negligible, but also for bent tubes at any angle
or for crossed straight tubes at any angle. Use of the various relationships
enables some quite unexpected possible cases to be analysed (see Table 1).

It is comparatively simple to decide which geometry will prevail and
which type of base is therefore likely. Recourse to Fig. 2 will enable the
significance of any scar to be determined by a suitable adjustment of the
critical value of H/r. There may be in-built pessimisms due to the assump-
tion of volumetrically constant wear rates and contact conditions. It has
been found most convenient when dealing with scars on many similar tubes
to calculate the critical value of H, to find the corresponding value of C and
then to plot graphically the percentage of a tube life expired with respect
to the scar width for each case. Such a graph then provides a rapid means
of analysing wear scars.
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Appendix A: Tube intersection

A.1. Tubes crossing at right angles

Consider the wearing of a tube of radius r, by a tube of radius r, whose
axes are perpendicular. From Fig. Al the following relationships can be
derived at any depth h:

h=H—r,(1—cos8) (A1)
h=r(l—cosq) (A2)
Z=rysin 0 (A3)
A=r?*(a— } sin 20) (A4)
v=[4d

arccos(l— H/r,) i
= 2r,%r, f (a 5 sin 2a) cos 0 df (A5)
0
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Fig. Al. Tubes crossing at right angles.

(from egn. (A3)) where, from egns. (A1) and (A2)

H r,
o =arccos{l — — + —=(1— cos 6)
n 51

This exact expression was used for the numerical integration which gave rise
to line IT in Fig. 2 with r, = r,.

In plan, the intersection of two cylinders at right angles has an elliptical
outline but rectangular contours at any height k (Fig. A2). If the maximum
scar width is C and the width at any depth & is ¢, the maximum length C’
and at depth &, ¢', then the area of the rectangle is cc'.
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Fig. A2. Tubes crossing at right angles (plan view).
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Hence the volume of the intersection

H
V=f cc' dh
)]

H
= 4f [(2hr; —RY){2r,(H—h) — (H—h)?*}]1Y* dh (A6)
0
The first order term in H gives

H
V= 8f{r1r2h(H-—h)}”2dh
0

H , h—

h— H
~ 8(r,rp) Y2 2 Hh(H—R)}?+ 5 arcsin

N |

~ wH () (AT)

Expanding to give the second order term in H

H h  H—h
V =8(rir) 2 [ {h(H—R)}? (1— — - ) dh
5 4r, 4r,

If the mean value of h within the major parentheses is taken as H/2 then the
correcting term may be used as a constant to give
H H
V=~ nH?%(rry)? (1— —_ — —)
8ry 8r,

(A8)

A similar expression may be obtained by means of an approximate
integration of eqn. (A5). The difference between this approximate integration
and the numerical integration is shown in Fig. A3.

A.2. Cylinders crossed at any angle

When the cylinders cross at an angle 6, and have a depth H of inter-
section, the width C is unaffected as measured orthogonal to the tube axis
even though, as Fig. A4 shows, no part of the scar has the unbroken width C
in that direction. Similarly, the value of C' orthogonal to the axis of the
other tube is unaffected. The area of the resulting parallelogram contour is
cc’ cosec 0. As cosec 0 is constant throughout all the contours the volume of

the tube crossing scar is
2 172 H H
V ~m7H*cosec 8 (ryry) "*{1— — — — (A9)
8y 8r,
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Fig. A3. Errors of approximate integration.

Fig. A4. Cylinders crossing at an angle 4.
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The validity of this approach was checked by the numerical integration
of the cross-section of the scar along the tube axis and it yielded indistinguish-
able results.

However, the above diagram shows that the scar width C may become
difficult to measure accurately when 0 is small. If 8 is nominally zero,
obviously the volume tends to infinity and the progression of the intersection
is then shown by line I in Fig. 2.

A.3. Bent cylinder crossing a straight cylinder

If a straight tube of radius ry is cut by a tube of radius r; bent in a curve
of radius r,, as shown in Fig. 3, and the bent pipe does not wear, then the
volume of intersection can be regarded as in two parts, A and B. The volume
of part A is that of a cylinder intersected by another of radius r,! and it is
simple to show that -

H Hy\ H
rl= (r2— ?3) (1 + 73) — ?3 (A10)
1

Unless either r, = e or r3 =r; the relative values of H, and H; depend
upon C. However, the volume of part A is given with sufficient accuracy
by Va

H H
Va = TH*(ryry)'7? (1 - - — )

8r,  8rt
The volume B is in plan, elliptical in both outline and contour. Being

bounded by the curves r,! and r,, it has an effective radius in the plane of
axis of the straight tube of r,* where

1 1 B 1 ALl
oo r,? (ALD)
Forry=rjand h <ry, then r,} = r,* = 2r,.

The volume B is given by
H3
Vg = f w{h%(2r; — h)(2r,* — h)}Y/2 dh (A12)

0

which, when r,* is a constant, as it will be for r; =0 or r,/H; = oo, is a
standard integral. Given the substitution X = 4ryr,* — 2(r; + rp)h + h? this is
of the form

(h —r3 +r*)(X)'"2

Ve [X(X)”Z _(rs+m)
3 2

+ (r3+ r)(r3—ry*)
2

T
H,

(A13)

log{2(X)"/? + 2h — 2(ry + rz*)}]
0



351

The last term of this unwieldy function may also be written as a hyper-
bolic function. Crucially, compared with the volume at H; = r3, the expression
for Vg progresses with C less rapidly than V,. The interaction of r; (via H,),
r, and r; precludes a general graphical representation for all ry, r, and r; and,
as r,* is not usually constant, the expression is not generally integrable. The
use of the expression

Vo = TH3 (ryr* 1’2(1— 2 ——3)
B 37(rsry) 8r* o

will be pessimistic. The difference between this type and all others considered
is that the part B has no independent existence unless r; = =@ and normally
appears, when there is an unwearing tube, as only a part of the wear volume:

for the more normal cases, for example equally wearing equal radii tubes,
part B does not exist.

Appendix B: The simple taper scar

Let X be the scar length, x any point along the scar, 8 the scar angle
and h = H(1 — x/X) the depth at x (Fig. B1).
The area of the segment at point x

A(x)=r2arccos(r h)—(r—h){rz—(r——h)2}”2 (B1)

If V equals the volume of cut-out
dx
dV=A(x)dx=A4 — dh
dh

dx_X
dh H
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Fig. B1. The simple taper scar.



X
dV=——Adn
H

X X X #
V=———f Adh=—f A(R) dh
Hx=0 Hh=0

For the first part of eqn. (B1) above substitute forn = 1— h/r
r—H r—H

r

H - ;
—h
f arccos(r )dh = —rf arccos n dn = —r{arccos n — (1— n?)/2}
0 n=1

r 1

={r’—(r—H)?}'*—(r—H) arccos(r:H>

For the second part of eqn. (B1) above
r—h

=Ccos ¢

~r—h=rcos¢

r—H
arccos
r

fH(r—h){rz—(r—hV}”zdh:f rcos ¢ rsin ¢ rsin ¢ d¢
° (b:{ol_(r__H)'Z}l/Z
=3 f ' sin?¢ d(sin ¢)
sing=0

-5

v X (ﬂ [{r2 —(r—H)}? —{r — H) arccos(r_H)}
H r

2

r /

combining the two parts




