
The Relativity of Particles 

The Fulling-Davies-Unruh effect is discussed and used as a poor man s approach 
to the Hawking radiance of black holes. Thermal radiation fields can arise in the 
vicinity of black holes, or simply due to the observer s acceleration. These effects 
are derived here in an accessible, if heuristic, manner. The opportunity is taken 
to review some of the basic features of quantum field theory. The generic lesson 
is that the presence or absence of particles is relative to the observer s state of 

motion, and hence to the spacetime geometry and the gravitational field. 
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1. The Bogolubov Transformation 

I stumbled upon Hawking s derivation of the radiance of black holes soon after he 
made the discovery, in the proceedings of a conference held at the Rutherford 
Laboratory, UK, in February 1974, see Hawking (1975). It took me years to 
understand it. However, the mechanism by which a spacetime can create a thermal 
radiation field is relatively simple to appreciate. This is illustrated here by the Fulling-
Davies-Unruh (FDU) effect, Refs.[2-4], whereby an accelerated observer sees the 
Minkowski vacuum as a thermal field with a temperature proportional to the 
acceleration. The Hawking temperature of a black hole can be obtained from the FDU 
effect by substitution of the black hole s surface g . This is not a rigorous derivation, 
of course, but it rationalises the result and makes the appearance of the Planck 
spectrum less mysterious.  

Important though these results are in themselves, arguably more important is what 
they imply about the nature of particles in physics. We are accustomed to some 
measured quantities being different according to the state of motion of the observer. 
Relativity theory takes care of this, telling us how quantities transform between 
observers in a covariant manner  thus revealing the underlying objective nature of 
reality (at least in classical physics). But surely the presence of a particle is something 
that observers must agree about? Can one observer see a particle where another sees 
none? Surely a particle is a particle is a particle? But, no, this is not so. The presence 
or absence of particles can also be observer dependent. Actually we have seen the first 
intimations of this already in the conundrum of the radiation from a uniformly 
accelerating charge in classical electromagnetism (Chapter ?). The inertial and 
comoving observers do not agree regarding the presence of radiated photons. But it is 
in quantum field theory that the issue comes firmly to a head. 

A transformation between observers means a spacetime transformation: observers 
differ in their position, orientation or state of motion. We do not have to look far to 
discover why spacetime might affect the concept of particle . A particle is virtually 
defined as an eigenstate of the 4-momentum operator, P . This is overtly a 
geometrical entity since it is the generator of isometries of the spacetime in question. 
It suffices to consider a scalar field to make the point. The quantum field theoretical 
description of a scalar field is,     
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Here ku  are a complete set of positive frequency eigen-modes and ka  is the Fock-

space particle annihilation operator. The second term in (1) consists of the 



corresponding negative frequency solution coupled with the creation operator for the 

anti-particle, kb . Both terms must appear if (1) is to respect the PCT theorem. In a 

curved spacetime we would require the existence of a globally timelike Killing vector 
field in order to define the time direction and to enable a clear distinction between 
particles and anti-particles. The ku  are also orthonormal with respect to some inner 

product, vu, , such that,    
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where the inner product respects, 
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What does (1) look like from the perspective of a different observer? Denoting the 
second observer s quantities by a tilda, since the field is a scalar we must have,     
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The second observer s basis functions, ku~ , are also orthonormal so the equivalent of 

(2) holds. But since the *, kk uu  are a complete set of functions, the transformed 

functions must be expressible as,     
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The substitution of (4) in (3) and equating with (1), followed by appeal to (2), 
provides the transformation for the creation/annihilation operators,     

k
kkkkkkk baa **~

   

           (5a)     

k
kkkkkkk baa

~~ *

   

           (5b) 

Equs.(4,5) are known as Bogolubov transformations, Bogolubov (1958). The 
Bogoloubov coefficients follow from orthonormality and the properties of the inner 
product, (2a,b), giving,    
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Now the vacuum state as far as the first observer is concerned is such that,     

00ka      (7) 

But for the second observer, acknowledging the possibility that they may not agree on 
the vacuum state, we have,     

00
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In fact we see that we are obliged, in general, to regard the two vacuums as distinct 
since (5) gives us, 
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where kbbk ,0  represents an anti-particle of momentum k . Consequently the 

second observer sees the first observer s vacuum state as containing (anti)particles. 
There will also be particles, of course, derived in the same way using the conjugate 

field,  .  

The expectation value of the particle number operator kk aa ~~  of the second observer in 

the k th mode with respect to the vacuum state of the first observer is thus,     
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That is, when the first observer sees a vacuum the second observer sees 
2

k
kk

 

particles in the k th mode. The orthonormality of the basis functions *~,~
kk uu  is easily 

seen to be equivalent to the following relations between the Bogolubov coefficients, 
expressed in matrix notation,   
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The diagonal components of are just (10), so the observation of k th mode 
particles by the second observer in the vacuum state of the first observer is predicted 

if the corresponding diagonal component of  differs from unity.  

Suppose now that the spacetime in question is Minkowskian and that both observers 
are inertial observers. The transformation between them is therefore a proper Lorentz 
transformation, consisting in general of an arbitrary rotation and an arbitrary boost 
(and a displacement of the spacetime origin if you wish). In this case the positive 
frequency basis functions ku  transform into combinations of only the positive 

frequency basis functions wrt the second observer, ku~ . Similarly, the negative 

frequency basis functions transform into combinations of the transformed negative 

frequency basis functions alone, ** ~
kk uu . This can be seen most simply by 

considering the explicit plane wave basis,     
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where rktxk and the positive root is taken in 
22 km  and m  is the 

mass of the field quanta (the particles in question). Note that we are using the usual 
particle physics convention here, dropping the factors of c and . The basis functions 
in the Lorentz transformed frame will just be,     
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where k
~

 is just the usual Lorentz transformation of the components of the 4-vector 
k . In this case it so happens that the transformed basis functions are trivial sums over 



the *, kk uu  in the sense that xuk
~  equals one particular function from the set ku . 

However, the key thing is that (12b) does not require the negative frequency 

solutions, xik
k eu* . From (6) this means that all the Bogolubov -coefficients are 

zero, and hence (9) shows that the vacuum seen by the two observers is the same. 
Two observers related by a Lorentz transformation will agree on the number of 
particles and the number of anti-particles. On the other hand, if the Bogolubov -
coefficients are not zero then the two observers will disagree in general regarding the 
number of particles present. 

Before examining cases for which the Bogolubov -coefficients are not zero we 
review very briefly some aspects of the basic formulation of quantum field theory. 

2. Why Particle-Antiparticle Creation is Forced Upon Us 

Using continuum- k  basis functions, (12), what we have written as discrete sums in 
(1,3,4,5,9,10) will become integrals with the following integration measure,     
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Note that the arbitrary normalisation volume, V, cancels in quadratic integrals of the 
basis functions. The basis functions, (12), and hence the field, (1), are solutions of the 
relativistic field equation for scalar particles, i.e., the Klein-Gordon equation 

02m .  

The identification of a suitable inner product caused some historical difficulties. The 

non-relativistic definition xdvuvu 3*,  is consistent under non-relativistic 

conditions with the interpretation of 2  as a probability density, and hence with 

uu,  being the total probability of a particle being found anywhere in space, i.e., 

unity. But the attempt to identify 2  with a probability density in the relativistic case 

runs into three problems, all of them fatal. Firstly it does not transform under Lorentz 
transformations as a probability density should. Secondly it is not necessarily positive. 
And finally, its integral over all space is not constant, i.e., it is not conserved. In the 

relativistic context a conserved quantity is represented by a 4-vector current J  with 

vanishing 4-divergence, 0J  (see Chapter ?). The conserved quantity is then 

xdJ 30 . A suitable current obeying 0J  is defined by iJ  where the 

anti-symmetric derivative is defined by vuvuvu . This transforms 
correctly under Lorentz transformations and produces a conserved quantity because 

0J by virtue of the fields obeying the Klein-Gordon equation1. The conserved 

quantity is therefore xdi t 3,  where the inner product is defined as,     
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1 Chapter ? shows how this expression for the conserved current can be deduced from Noether s 

Theorem for a complex field whose Lagrangian is invariant under a phase change ie . 



Some authors refer to this inner product as a scalar product but this is unfortunate 
since it is actually the time component of a 4-vector and hence not a scalar in the 
tensorial sense. However, we are still left with the problem of ,  defined by (14) 
not necessarily being positive. This can be seen if, in (1), we replace the creation and 
annihilation operators by ordinary functions of the momentum. In this case it is easily 
derived that,    
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So if the anti-particle amplitudes are dominant, (15a) will be negative. In terms of the 
Fock space creation/annihilation operators (15a) becomes,   
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But kk aa  extracts the number of particles in mode k  in a given state, i.e., 

kkk aaN , and similarly kk bb  extracts the number of anti-particles. So it now 

becomes physically acceptable that (15b) might be negative since this merely means 
that there are more anti-particles than particles.  

Moreover, and most importantly, the fact that (15b) is conserved does not require that 
the number of particles and anti-particles are separately conserved  only their 
difference. This means that any number of particles and anti-particles may be created 
or annihilated as long as they are created or annihilated in pairs, so that the difference 
in their numbers is constant. Note that because particles and anti-particles are 
oppositely electrically charged, (15b) is equivalent to the conservation of charge. 

It is possible, of course, that the number of particles will be conserved  provided that 
the number of anti-particles is also conserved. This is the case in classical, low energy 
situations. But in general, for example if sufficient energy is available, there is no 
reason to expect the number of particles to be conserved and it will not be. 

Before ending this brief review of the basics of quantum field theory it is worth 
pointing out a crucial feature of the basis functions, (12), namely the appearance of 
the frequency in the normalising coefficient. Some authors are guilty of giving the 
impression that this is merely an arbitrary normalisation convention. Admittedly this 
factor need not be applied to the basis functions, it could appear instead in the integral 
measure in (13). But it must appear somewhere. The frequency in the denominator is 
essential so that, with the definition (14) for the inner product, the frequency term 
cancels in quadratic integrals. Otherwise the time derivative in (14) would result in 
such integrals having a factor of . In (15b), for example, we would be obliged to re-
interpret the creation and annihilation operators so that the number operator was 

kk aa . Alternatively expressed, with the usual interpretation of the 

creation/annihilation operators, the number of particles would be 

/kkk aaN , so this denominator of  will inevitably crop-up. It is clear that 

this frequency denominator must have an absolute significance, not be a mere 
convention, because it works through into the predictions for the energy dependence 
of experimental cross-sections. Its absolute nature can be traced back to the arguments 
made above for the adoption of (14) as the appropriate inner product. 



3. Particle Creation by Uniform Acceleration 

Let us now consider the case of a Minkowski space vacuum as seen by an observer 
undergoing constant acceleration (a Rindler observer, who we shall call R). Assuming 
this observer is instantaneously comoving with an inertial observer, S, at time zero in 
both frames then the velocity of R seen by S is gv tanh , in units with 1c , where 

 
is the accelerating observer s time coordinate. Here g

 
is R s constant acceleration 

wrt the instantaneous comoving inertial frame. In contrast, wrt our fixed inertial 

frame, S, the acceleration is 3/ vga  where 21/1 vv . Inevitably the 
acceleration seen by S is vanishingly small at early and late times since R s speed is 
then very close to the speed of light.  

Suppose a plane wave of angular frequency  and wavenumber k  is propagating 
through Minkowski spacetime in the same direction as R for 0 , i.e., the negative 
coordinate direction. We shall assume a massless scalar field for simplicity, so that 
k . At his time , observer R will see this wave as Doppler shifted to the 
frequency,    
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Hence the wave is red-shifted to very low frequencies for 0 , whereas for 0  it is 
blue-shifted to very high frequencies. (For future use we note that a wave propagating 

in the opposite direction has ge~  and the red/blue shifting is reversed). Because 
R sees a time-varying frequency it must really comprise a spectrum of different 
frequencies in his frame of reference. The total phase at time  in frame R is,    
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which becomes simply ge
g

 is we choose the reference zero phase 

appropriately. Consequently the wave seen by R is proportional to ge
g

iexp . The 

frequency spectrum seen by R is the Fourier transform of this function wrt his time 
coordinate, , i.e.,    

ge
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where  is the (angular) frequency seen by R. Making the substitution gey , (18) 
becomes,    
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But recall that the gamma function is dtetz tz

0

1 , in terms of which (19) is 

readily evaluated to be, 
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Now the frequency spectrum seen by R is just 2
fS . Hence, using the 

identity 
yy

iy
sinh

 we get,    
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The second factor in (21) is just a Planck factor, whose standard form is 
11/exp TkB , where KJkB /1038.1 23 is Boltzmann s constant. This 

(almost) establishes that R will see thermal radiation with a temperature given by,     
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This is the Fulling-Davies-Unruh temperature seen by an observer accelerating at a 
rate g  through Minkowski vacuum. In (22) we have re-introduced the speed of 
light, c , explicitly so that the reader may explore the magnitude of the temperature for 
various accelerations. For the acceleration due to gravity on Earth it is a mere 

20104  K  not great enough to upset low temperature physicists. 

This simple derivation, which we have taken from Alsing and Milonni (2004), is 
probably the simplest achievable means of rationalising how the Planck factor 

11/2exp g  arises from accelerated motion. It takes much of the mystery away 
from the phenomenon since the Planck factor is seen to arise simply from the time-
dependent Doppler shift due to the observer s acceleration.  

Note that the frequency spectrum, (21), seen by R applies for whatever plane wave 
frequency  we start with in frame S. Remarkably (21) is independent of . This is 
fortunate since the Minkowski vacuum in frame S consists, of course, of a 
superposition of all frequencies, as shown by (1). Had they corresponded to different 
spectra in frame R the combined effect might not be a Planck spectrum or have a well 
defined temperature.  

The above simple, if heuristic, derivation has by-passed the need to calculate the 
Bogolubov coefficients. However, we noted previously that it would be the presence 
of negative frequencies (as seen by R for positive frequency waves in S) which would 
cause the Bogolubov coefficients  to be non-zero, and hence to give rise to 
particle creation. That negative frequencies do indeed arise in the accelerated frame 
can be seem from (20) and (21), since f  is non-zero for 0 .  

The alert reader will have noticed, however, that (21) is not actually a Planck 
spectrum  because of the frequency dependent first factor. At this point we must note 
that the above derivation is really just heuristic and we should not be surprised that 
it has gone slightly astray. For a better argued derivation we again turn to Alsing and 
Milonni (2004).  

Firstly consider how the inertial observer would describe a thermal field. He would 

see each mode k  as populated with 11/exp TkB  particles, i.e.,  



    
1/exp

3

Tk

kk
aa

B
kk

   
           (23) 

We are not interested in spatial variations, so we consider the field at the origin only, 
so that (1), with the plane wave basis (12a), becomes,    
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Here we have assumed massless scalar particles which are equal to their own anti-
particles and have reduced the problem to one spatial dimension only. The Fourier 
transformed field, which is the operator analogue of (18), is, 
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Using (23) the expectation value of the product ff

 

in the thermal state is, 
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But dk
V

k 2 
for modes confined to one spatial direction so that, noting that there 

are two values of k for which , then we see that (26) becomes, 
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This characterises the quantum field of a thermal state seen by an inertial observer. 
(Note that the numerical factor in (27) depends upon the normalisation convention for 
both the basis states and f ).  

Now let us investigate the quantum field seen by an accelerating observer when there 
is simply a vacuum in the inertial frame. The quantum field seen by the accelerating 
observer and expressed in terms of his own time coordinate, , is,   
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where the sum is over all positive and negative wave-numbers, i.e., in both directions 
of propagation, and kk /  in accord with the observation made after Equ.(16). The 

Fourier transformed field in analogy to (18) is, 
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We will want to form the vacuum expectation value of the product ff , so 

only the ka  will survive. The time integral is conducted in the same way as above, the 
main difference from (20) being that we have now accounted explicitly for the sum 
over all modes in (29). Thus we get,                 (30) 
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 so that (30) becomes, 
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where we have set the temperature as in (22). But (31) is identical to (27) thus 
demonstrating that a detector accelerating through Minkowski spacetime will behave 
just like an inertial observer s detector in a thermal field at temperature T . We also 
see from the derivation of (27) how the pre-factor /1  arises and that it is 
consistent with these observers detecting thermal radiation with a Planck spectrum. 

4. Who Sees Particles? 

It is uncontroversial that a detector carried by the accelerated observer will register 
thermal radiation at the temperature given by (22). In short-hand we say, the 
accelerated observer sees particles . Since the starting assumption was that the inertial 
observer sees a Minkowski vacuum, that would appear to be the end of the matter 

 

the inertial observer sees no particles. However that ignores the back-reaction of the 
accelerated particle detector on the field. If the accelerated observer carried no 
detector (in which case he would be blind and could see nothing) then there would 
be no physical source which could possibly produce radiation to be seen by the 
inertial observer. But the existence of an accelerating physical device which can 
detect particles, and which is therefore necessarily coupled to the field, provides the 
potential for a back-reaction and the creation of radiation observable by the inertial 
observer, so-called Unruh radiation . Whether this actually happens is contentious. 
One point of view, e.g., Birrell and Davies (1982), is that any transition of the 
accelerated detector must be accompanied by the appearance of a quantum in the 
field, 10 , so that Unruh radiation will occur. They attribute the source of the 

energy which brings about the creation of this quantum, and the simultaneous 
excitation of the detector, to the agency which causes the detector to accelerate. On 
the other hand, some authors argue that Unruh radiation is not real. For example, Ford 
and O Connell (2005) use an oscillator model of a particle detector and claim that this 
results in no Unruh radiation. The resolution of the conflict might lie in the nature of 
the detector. Perhaps Unruh radiation occurs for some types of detector but is not a 
necessary phenomenon for all possible detectors  but this is just speculation. 
Akhmedov and Singleton (2007) go as far as to claim that Unruh radiation has already 
been detected in circular motion (in the form of the depolarisation of electrons 
magnetically confined in storage rings).  



5. Hawking Radiance of Black Holes 

We now make a wild leap of faith that the Hawking temperature of black holes may 
be deduced from the Fulling-Davies-Unruh temperature, (22), by insertion of the 
gravitational acceleration at the event horizon. For a non-spinning Schwarzschild 

black hole the radius of the event horizon is 2/2 cGMrbh . Consequently the surface 

gravitational acceleration is GMcrGMg bh 4// 42 . Inserting this in (22) gives the 
temperature of a non-spinning, uncharged black hole to be,     
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Hence, a solar mass black hole has a temperature of 6 x 10-8 K, whereas a black hole 
with a mass of 1 gram would have a temperature of 1.2 x 1026 K. A black hole of the 
Earth s mass, 6 x 1024 kg, would have a temperature of 0.02 K, nearly 18 orders of 
magnitude greater than the temperature due to the Earth s actual gravitational 
acceleration. 

Of course we have not really derived (32), though it is the correct answer. In the 
context of a black hole, in contrast to the FDU effect, there is spacetime curvature and 
the predicted thermal radiation is seen by an inertial observer at rest with respect to 
the black hole at spatial infinity. However the result may be derived by computing the 
Bogolubov -coefficients, (6), in a spherical wave basis. In the original Hawking 
(1975) approach, and as reiterated by DeWitt (1975), the key is to appreciate the 
importance of the actual formation of the black hole. Thus, at early times the matter 
which will eventually undergo gravitational collapse to from the black hole was still 
dispersed. This allows the definition of IN state basis functions, which play the role 
of the ku  functions in (6). However, at late times, after the black hole has formed, the 
basis states are modified by the intense gravitational field. These late basis functions, 
or OUT states, play the role of the ku~  functions in (6). This is rather like a 
scattering problem in which incoming spherical waves get scattered off the 
gravitational field. The phase of these scattered waves is non-linearly related to the 
asymptotic spacetime coordinates, just as happens in the FDU effect, Equ.(17). It is 
this which leads to the Bogolubov -coefficients, (6), being non-zero. Carrying 
through this calculation one finds that the key integral is very similar to that of (18) 
and (29) used to derive the FDU effect, and the result is again a Planck spectrum. The 
detailed derivation shows that this Planck spectrum is seen, in the black hole case, 
filtered by a transmission coefficient.  

What is the total power radiated by a black hole? For a single, massless scalar field 
the answer follows from the temperature, Stefan s law, and the surface area, giving, 

Single massless scalar field:  
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The actual total radiated power depends upon how many fields actively participate, 
and upon their spin and mass. There are no massless scalar fields really, so (33) is not 
directly relevant. Moreover, higher spin suppresses the radiated power, so photons 
will radiate more power than gravitons, though both will contribute. If neutrinos were 
massless they would be the dominant form of radiation  being of lower spin than 
photons and also because there are more distinct types of neutrinos. However, the 
contribution of non-zero mass particles will be negligible for temperatures below their 



threshold, roughly for mTkB 2 . Only upper bounds have been established for the 
neutrino masses. Assuming the lightest neutrino mass were 1.0 eV then a black hole 
would have to have a mass less than ~1020 kg, or less than ~10-5 Earth mass (less than 
~10-11 solar masses) for neutrinos to contribute significantly to the radiation. For 
heavier black holes the radiation will be dominated by photons and the power will be 
roughly double that of Equ.(33) due to the two photon polarisation states. 

As a completely tangential aside it is interesting to note the size of the numerical 
factor in (33). To those who have faith in dimensional analysis this is a salutary 
lesson. The actual radiated power differs from the dimensionally correct factor 

26 / GMc  by nearly five orders of magnitude.  
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