
The Remnant of a Shadow 

Unitarity in scattering theory and the optical theorem; what is the cross-section 
of a black disc of radius a? 
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In this Chapter we consider scattering a particle a  off another particle, or target, b . 
The outcome may be elastic , by which is meant that the same pair of particles 
emerges in the out-going state, baba , or inelastic , which means everything 
else: ba anything different. Examples of inelastic collisions are, (i)a neutron 
striking a nucleus and leaving it in an excited state; (ii)a neutron striking a nucleus 
and being absorbed, forming a new nucleus; (iii)two or more completely different 

particles being formed, e.g., 00Kp . Virtually all our information about 
particle physics is obtained from scattering experiments, so theorems about cross 
sections are particularly important. 

I used to think that the optical theorem was something magical. It relates the total 
cross section to the imaginary part of the elastic forward scattering amplitude, thus,     
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where k  is related to the momentum of the scattered particle in the normal way, 
kp . (From this point in this Chapter we shall adopt the particle physics convention 

of dropping factors of c and ). But the scattering amplitude is related to the 
differential cross-section, and thence to the total cross-section via,   
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The quantities in (2) can be understood as applying to either the elastic process or 
some inelastic process. However, (1) relates the total, elastic plus inelastic, cross-
section ( inelTOT ) to the elastic forward scattering amplitude.  

What puzzled me was how there could be enough information in the forward 
scattering amplitude, 0elf , to determine the total cross section. This seemed 
strange because the total cross-section is an integral over the (absolute square of the) 
scattering amplitude at all angles, not just the forward direction, (2). Moreover, how 
could the forward elastic amplitude tell us anything about the inelastic channels, 
which are also included in the LHS of (1)? 

But the optical theorem is not the remarkable dynamical constraint that I thought it 
was. Actually it is rather a prosaic result which follows simply from the conservation 
of probability, or unitarity. The key to demystifying the optical theorem is to recall 
what is meant by the scattering amplitude. In quantum mechanics, or field theory, the 
scattering process can represented by the S-matrix defined so that the probability 
amplitude for an initial state i  producing a final state f  is fiS , the corresponding 

operator being such that, 
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Two things can happen: nothing or something. The former possibility, that the input 
state is unaffected by any interaction, is represented by the unit matrix, I . 
Consequently we write,      
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The T-matrix in (4) is that part of the S-matrix which accounts for some change 
occurring. So the scattering amplitude, f , is proportional to T  (or, rather, some 
matrix element thereof). Note that the factor of i2 in (4) is an arbitrary convention. 
More of normalisation issues later.   

That the S-matrix must be unitary, ISS , is easily established. The probability that 

the initial state i  produces the final state f  is 
2

fiS . But any initial state must 

produce some final state, so we must have
f
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, where the sum is over every 

possible final state. Hence,   
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Because (5) must hold for an arbitrary input state, i , it follows that all the diagonal 

elements of SS

 

in some orthonormal basis are unity. However the same must be 
true for, say, the input state 2/ji , where i  and j  are distinct orthonormal 

basis states. Then (5) gives, 
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Hence,    02 jSSiiSSjjSSi   (6) 

But we could have considered the input state 2/jii  instead, in which case (6) 

would become 0Im2 jSSiiSSjijSSii . So we conclude that 

0jSSi  for any pair of orthonormal states. Putting this together with (5) proves 

that the S-matrix is unitary,      
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(Note that this is the same as saying that the Hermetian conjugate of S equals its 

inverse, 1SS ). Unitarity is simply the requirement for probability to be conserved 
 or perhaps consistency of interpretation may be a better way of expressing it.  

Now if we substitute (4) into (7) we get,  
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One can already see the formal similarity between (1) and (8). Recalling that the 
scattering amplitudes are proportional to the corresponding matrix element of T . 
Hence, the scattering amplitude for an initial state i  to produce a final state j  is 



iTjf ji . In particular, the forward elastic scattering amplitude, when the final 

state is the same as the initial state, is 0,0,0 elTelfel . Taking this 

matrix element of (8) gives, 
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Providing that the constant of proportionality in the relation iTjf ji  is the same 

for all states then (9) implies,    
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But (2) shows that the summand in (10) is just the differential cross-section for some 
arbitrary elastic or inelastic collision, from the desired initial state. Summing over all 
possible states thus provides the total cross-section since the angular integration in (2) 
is subsumed in this sum, as is the sum over all possible inelastic channels (as well as 
elastic scattering). Consequently (10) is just the optical theorem, sans the coefficient 
of proportionality. 

This demystifies the optical theorem. The important thing is that, due to (4), T , and 
hence f , are related to IS , that is to the change in the initial state. The forward 
elastic scattering amplitude, 0elf , should not be confused with the total 
amplitude of the original state. It is the change in this amplitude. Clearly the only way 
in which either scattering away from the forward direction, or inelastic collisions, can 
occur is if the amplitude of the initial state reduces. So the total probability of all non-
null transitions ( TOT ) must be related to the change in the amplitude of the initial 
state, 0elf . That this relationship is linear in 0elf  results from the fact that 
the mechanism for the reduction in the forward elastic amplitude can only be 
interference between the unperturbed state and the scattered state, i.e., the two terms 
on the RHS of (4).  

All that remains is to establish the constant of proportionality in (10). This is uniquely 
defined because the normalisation of the scattering amplitude is defined by its relation 
to the differential cross-section, (2). There is a multitude of different ways to derive 
the optical theorem. Schiff ( ) does it via solutions to the Schrodinger equation, 
including the possibility of inelastic channels by considering complex potentials. 
Jackson ( ) does it from the perspective of diffractive optics, in terms of the 
underlying electromagnetic fields. Gasiorowicz ( ) does it from the particle physics 
perspective, illustrating the derivation by pion-nucleon scattering. Perl ( ) does it in a 
more general fashion from the particle physics perspective. Many derivations use 
either the asymptotic form of a scattered wave or a partial wave expansion. The 
disadvantage of these derivations is that they may leave the reader with the 
impression that the optical theorem is reliant upon these mathematical descriptions 
being valid. But this is not so. Essentially we have all but established the theorem 
already, using unitarity alone, in the form (10). Establishing the factor of k/4  is just 
a matter of getting the normalisations right. It is preferable, therefore, to employ a 
method which introduces no extra assumptions but rather emphasises that proper 
normalisation is the issue. It is also preferable to be explicitly relativistic (Lorentz 
covariant). This can be done easily enough, but is rather long winded since various 
standard formulae for the cross section and differential cross section need to be 



derived. This derivation is sketched in the Appendix. Here we prefer a quicker way to 
the result, but restricted to non-relativistic, elastic scattering and at the expense of 
introducing a particular asymptotic form of the scattered wave. The Appendix shows 
that none of these restrictions is necessary.  

For elastic scattering the asymptotic form of the wave equals the incoming plane 
wave plus the scattered wave which diminishes in amplitude as r/1 , thus, 
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The elastic nature of the scattering is reflected in the wavenumber, k , being 
unchanged in the scattered wave. Equ.(11) explicitly introduces the scattering 
amplitude, f , in its simplest form. It can be an arbitrary function of the scattering 
angle. The intensity at large r  is thus,   
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If we integrate over a large sphere to get the total flux it must equal the incoming flux, 

i.e., drdr 222
1 , and hence we must have,   
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But 2
,elf  is just the differential cross-section, (2), so the first term in (13) is just 

the total elastic cross section. Hence, 
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Or,   defefr ikr
el

ikr
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Now because r  the exponents in (15) will vary very rapidly for small changes of 
angle, resulting in integration to virtually zero at all angles other than very near the 
forward direction, 0 . The method of stationary phase gives an exact result in the 
limit r . It can be evaluated from first principles as follows. Consider integration 

over a small range of  near 0 for which we can put 2/cos1 2 . We have, 
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But as we consider increasing values of the small angle , the first term in (16) 
rotates rapidly around the Argand plane and averages to zero. We can then put,    
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So (15) becomes simply,    
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which is the optical theorem, (1), for the case of elastic scattering.  



As noted already, the basis of the optical theorem is simply that any, and all, particles 
emerging other than in the original state in the forward direction must be at the 
expense of a reduction in the forward elastic flux. There is another consequence of 
this simple observation. Consider a perfect absorber of geometrical area A . What is its 
total cross section? We can readily see that ATOT  because, in addition to the 
absorption cross-section of A , there will also be diffraction around the edges of the 
object, resulting in elastic scattering at small angles. Now the total wave is 

si , where i  is the incoming wave and s  is the scattered wave. But 
immediately behind the opaque object there is shadow. Consequently in this region 
there must be perfect destructive interference between these two components of the 
total wave, is . The shadow does not extend to infinity, however. Diffraction 

around the object obliterates the shadow after a distance of the order 2ka , where a  is 
the smallest linear dimension of the area A . This diffracted wave is the very s  which 
causes the shadow. But since is  over the area A  immediately behind the object, 
the associated diffracted flux is equal to that absorbed. So there is an elastic cross 
section equal to the absorption cross section of A . The total cross section is therefore 

ATOT 2 . For example a perfectly black disc of radius a  has a cross section of 
22 aTOT , not 2a  which might naively have been expected. The elastically 

scattered flux of 2
iA  is the diffracted wave near the forward direction, visible in 

principle at distances greater than 2~ ka . Since this diffracted wave originates from 
the shadow and is visible beyond the shadow, it can be regarded as the remnant of the 
shadow.  

This shadow scattering  has been discussed by Peierls ( ) and Schiff (1954) though 
the phenomenon, like the optical theorem, was known within classical optics much 
earlier.  

Appendix 

 

Covariant Derivation Without Extra Assumptions 

We start by noting that (4) is not the most appropriate definition of T  for a continuum 

of plane wave states, since it is bound to contain a factor of if PP4  where fi PP , 

are the total 4-momenta of all the particles involved in the initial and final state 
respectively. The delta function expresses the conservation of energy and momentum. 
It is more appropriate to extract this factor from the definition of T . There is no 
universally agreed convention but one commonly used one is,    
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We now need to find the equivalent of (8), the unitarity condition, with this 
normalisation of T , and also to express the cross-section in terms of this T  so as to 
make contact with the scattering amplitude through (2). We shall assume scalar 
particles. No problems of principle arise if the particles have spin, but for simplicity 
we are not carrying through the spin indices. 

We shall take plane wave states, labelled by their 4-momenta, to be normalised so 
that,    
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where 0pE . This corresponds to a density of states such that the momentum space 
integration measure is,     
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These are consistent in the sense that integration of pp over all states using (13) 

as the integration measure yields the identity operator, as we expect, i.e.,  

pppEp
E

pd
ppp

E

pd 33
3

3

3

3

22
2222

 

           (22) 

Note that (12) and (13) are not completely arbitrary. It is required that both be Lorentz 
scalars, which the factor of E  accomplishes. Those familiar with field theory will 
recognise (13) as the integration measure used to form the fields by integrating over 
plane wave states. I recall being misled into believing that this was an arbitrary 
normalisation convention. But clearly it is not since the denominator of E  in (13) 
affects the energy dependence of calculated cross-sections in field theory. The 
integration measure (13) is motivated by the fact that the particle probability density 

for a scalar field obeying the Klein-Gordon equation is 0i and the time 
derivative brings down the factor of E .  

In view of (13), the unitarity condition expressed in terms of the T-matrix, (8), 
becomes, 
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In (15) the sum variable, f , denotes the different possible products of the collision 
whilst the integration is over the momenta of the fN particles involved. For the 

purposes of establishing the optical theorem we need (15) only for the case that 
ji the elastic forward scattered state. Hence, 
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The derivation of the expression for the total cross section in terms of the T-matrix 
can be found in particle physics or field theory texts, such as Perl ( ), Mandl and Shaw 
( ), or Martin and ? ( ). The starting point is the probability of the initial state 
becoming an arbitrary final state different from the initial state, which is obtained by 
summing over all final states using the integration measure, (13), which gives, 
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Using (11), which becomes fiiffi TPPiS 442  for if , (17) can be re-written 

in terms of T. This involves potentially problematical products of delta functions, but 

these can pragmatically be interpreted by using 44 2/0 VT , where V  is the 
normalisation volume for the plane waves and T  is the period of time for which the 
incoming wave persists. Both these quantities cancel when forming the cross section, 



since the cross section is defined in terms of the transitions per unit time and per 
target particle, and the latter is proportional to the volume. From (12) the number of 

target particles per unit volume in proportional to 2cmE bb , the energy of the 
particle b, taken as the stationary target. The incoming flux of the particles of type a is 
thus aavE , where av  is their velocity. Hence (17) must be divided by a term 
proportional to aba vEE  to get the cross section in the laboratory frame. By noting that 

the Lorentz invariant quantity 222
baba mmPP , where ba PP , are the 4-momenta, 

reduces to aba vEE  in the lab frame, the corresponding quantity in the centre-of-mass 

frame is seen to be ***
ba EEp , where the asterisks represent the com frame and *p 

is the magnitude of one of the particle 3-momenta in this frame. Putting all these 
things together, and keeping track of the numerical factors, yields the total cross 
section for the initial state i  is, 
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But (18) is the same as the LHS of (16) apart from the denominator of ***4 ba EEp , 
so (16) becomes, 
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The final relation that we need is that between T  and f  for elastic scattering in the 
com frame,      
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The proof of this follows from deriving the differential cross section from (18) and 
using (2). Details can be found in texts such as cited above. Substituting (20) into (19) 
final gives the optical theorem complete with its correct factor of proportionality, 
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This is exactly as (1), but we now see that it is the com momentum which must be 

used, *p .  
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