
The Kepler Problem 

Kepler, Newton, Monsieur Bertrand and the Hermann-Bernoulli-Laplace-
Hamilton-Gibbs-Runge-Lenz vector: the general solution to the Kepler problem. 

If the solutions are conic sections, what exactly is the cone? And why does this 
non-relativistic, classical problem lead us to relativity and quantum mechanics? 

Last Update: 24/2/12  

Fortuitous, wasn t it? The ancient Greeks had complete knowledge of the geometry of 
conic sections. Consequently, so did Newton. What jolly good fortune that the motion 
of the celestial bodies turned out to be just these very conic sections. Good luck or 
not, it has to be one of the juiciest bits of physics. And the Kepler problem has not run 
out of surprises yet. Ask yourself, if the planetary motions are conic sections, what 
exactly is the cone? But first, to Kepler. 

By the sweat of his brow, by dint of manual number-crunching over many years, and 
with no little inspiration, Kepler conjured his famous three laws of planetary motion 
out of a mountain of observational data. They are, 

[1] The planets move in ellipses with the Sun at one focus; 

[2] The radius vector from the Sun to a planet sweeps out equal areas in equal times; 

[3] The ratio of the square of the period to the cube of the semi-major axis is the 
same for all planets. 

With these laws as the clue, Newton deduced the inverse-square law of gravity. But 
how many of these laws do you need to deduce the inverse-square law? We can start, 
as Newton did, from an appreciation that the general law of motion is prmF , 
where p  is the momentum, r  the time dependent position vector, and m  the mass of 
the orbiting body. 

Remarkably only about one-and-a-half of the laws are required to deduce the inverse 
square law. More precisely we need the second law and part of the first law, plus a 
little bit more. Specifically what we need is, 

(i) The planets move in closed, stable orbits; 

(ii) The radius vector from the Sun to a planet sweeps out equal areas in equal times; 

(iii) Gravity gets weaker with increasing distance. 

The first of these is a reduced version of Kepler s first law. Ellipticity is not 
mentioned. The last, (iii), is the little bit more , though most people might regard it 
as self evident. Hence, Kepler s third law is not necessary, the second law is 
unchanged, and the first law has been considerably weakened. 

Kepler s second law is equivalent to the conservation of angular momentum, which in 
turn is equivalent to motion in a central force. A central force  is defined as a force 
whose magnitude depends only upon the radial distance from some origin, not upon 
the angular coordinates, and whose direction is radial, thus, 
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This is equivalent to a potential which is a function of the radial distance, r only, 
rV , so that, 
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The angular momentum is defined as,      
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This is a constant of the motion in any central force, as can be seen from,    
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The first term in (4) is identically zero. The second term is zero by virtue of the force 
being central, i.e., of the form (1).  

If the body moves r  in time t , then it sweeps out an area 2/rr . Consequently 

the rate of sweeping out area is just the magnitude of mLmprrr 2/2/2/ . So 
the rate of sweeping out area is constant, which is Kepler s second law. What has 
been shown is that the assumption of a central force is sufficient to derive the second 
law. 

Conversely if the potential function depended upon the angular position as well as the 
radial position then the force would have a non-zero component in a direction 
perpendicular to r , proportional to V , and so L  would not be a constant of 
motion, and hence Kepler s second law would not hold. So the second law is also 
sufficient to deduce that the force is central. 

The other thing that the constancy of L

 

tells us is that the planetary orbits are planar. 
It is clear from (3) that L  is perpendicular to the instantaneous plane of the motion. 
So the constancy of L  means that motion is in a fixed plane.  

So far, so good, but knowing that gravity is a central force does not assist us with its 
radial dependence. The function rf  could be anything at all provided that it depends 
only upon the radial distance and not upon the angular coordinate. The second law is 
then respected. So how can we deduce the inverse square law with no extra 
information than our substitute laws (i) and (iii), above?  

That the inverse square force law is the only possibility which obeys these conditions 
is known as Bertrand s Theorem. It was first proved only in 1873, nearly two 
centuries after Newton s Principia (1687). An English translation of the French 
original has been published by Santos et al (2007). The key word in our alternative 
law No.(i) is stable . Of course any central force will admit circular orbits if the 
initial conditions are suitably contrived. However they will always be unstable orbits, 
becoming non-closed under the smallest of perturbations. Bertrand (1873) proved that 
there are only two central forces which produce stable, closed orbits. These are the 
inverse square law and a force which is proportional to the radius (roughly speaking 
an elastic string). The purpose of our little bit extra , law (iii), is to exclude the latter. 
Hence the inverse square law is all that remains. 

Newton would not have been aware of this means of deducing the inverse square law. 
He was, though, well aware of the solution to the equation of motion for both the 
inverse squared law and the elastic string , discussing both in the Principia. Both 
admit elliptic solutions, though only the inverse square force has the origin (the Sun) 
at the focus. The elastic string is tied to the centre of the ellipse.  



Having arrived at the correct form of the gravitational force law, we can proceed to 
prove that the motion must be a conic section  specifically ellipses for closed orbits 

 
and thence prove Kepler s first and third laws. For amusement, and because it will 
prove useful later1, we shall show that the solutions are the conic sections without 
integrating the equations of motion. Of course we know that differential equations 
cannot be necessary, after all Newton (1687) did it using only Euclidean geometry. 

The trick is to note that in addition to energy and angular momentum, there is another 
quantity which is a constant of the motion, namely,     
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where r  is the unit vector in the radial direction, rrr / , and K is the constant in the 
inverse square gravitational force ,     
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The attractive nature of gravity means that 0K . The constancy of M  is easily 
established as follows,    
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where we have used the identity cbabcacba  and also the fact that 

rrr  (which follows from rrrrr  and the fact that 0rr ). The constant vector 
M  defined by (5) is generally known as the Runge-Lenz2 vector: more of its magic 
latter. For now we shall use it to solve the Kepler problem without integrating the 
equations of motion. 

We can write npLLp  where n  is a unit vector perpendicular to the direction of 
motion (and lying in the plane of motion). Hence (5) can be re-arranged as,     
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This shows that rKMmpL /  and that the trajectory of the heavenly body obeys,     
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1 That is, in the derivation of the energy levels of the hydrogen atom. Just as in this Chapter the 
trajectories are found without directly solving the equations of motion, so in Chapter ? we shall show 
how the energy levels of the hydrogen atom can be found without solving the Schrodinger equation, in 

both cases the magic being provided by the Runge-Lenz vector, M .  
2 The Runge-Lenz vector appears to bear this name only because it was discussed by these authors in 
the early 20th century and thence picked up by Pauli who attached their name to it. However it was first 
discovered in primitive from by Jakob Hermann in 1710 and found its way via Bernoulli to Laplace 
later the same century. It was rediscovered several times in the next two centuries.  



This is effectively an equation for the shape (but not the size) of the trajectory, 
because M  and K  are constants. It is in a non-standard form which specifies the 
normal to the trajectory in terms of the angular position. All that remains is to show 
that (9) is equivalent to an arbitrary conic section. To do so recall that an arbitrary 
conic section can be written, in polar coordinates,     
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Without loss of generality we can assume 0A . The different types of conic section 
occur for, 

0AB : Ellipse 

0;0 AB : Circle 

AB :  Parabola 

AB0 : Hyperbola (+ branch) ;   0BA : Hyperbola (- branch) 

To establish that (10) can be written as (9), take M  as defining the x-axis ( 0 ). The 
gradient of the trajectory is,     

sin

cos

K

KM

n

n

dx

dy

y

x

   

           (11) 

But in polar coordinates for which cosrx , sinry  the gradient is, 
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Using (10) we find,  dArdr sin2               (13) 

So (12) becomes,     
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This is exactly as (11) with MA  and KB . It remains to find the absolute size 
of the trajectory by determining the constant . To do so we appeal to the one 
constant of motion that we have not yet used  the energy. Of course we know that the 
total energy is just the sum of the potential and kinetic energies and hence is,     
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But really we should prove that this is a constant. This is easily done,    

0
222

r
r

K
rr

r

K
rrmr

r

K

dt

dE

  

           (16) 



by virtue of rrr , as noted already. Now consider the point at which the trajectory 
is closest to the origin. Call this smallest distance mr . At this point we have 0r  and 
so the velocity is purely in the -direction. The kinetic energy at this point is 

therefore 
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All terms in (17) are constants, and hence it forms an equation from which to 
determine mr . The solution(s) is/are,     
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Only solutions with positive radial coordinates are physical. Consequently we can 
distinguish two cases, 

(i) 0E : In this case the first term in (18) is negative and so the positive option must 
be chosen for the  sign, which yields a unique, positive outcome for mr ;     
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(ii) 0E : In this case the first term in (18) is positive and so either option can be 
chosen for the  sign since both result in a positive outcome for mr . Writing these 
two possibilities explicitly,  
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Now we realise that the condition 0r  which we have used to derive these results is 
not strictly the condition for a minimum distance, but rather for any turning point of r. 
The two results in (20) are respectively the minimum and maximum distance of the 
trajectory from the origin. The existence of a finite maximum distance implies that the 
trajectory is a closed orbit. In contrast, case (i) yields no such maximum and hence 
corresponds to an open trajectory in which the body escapes to infinity. These 
conclusions are consistent with the energy requirement for the two cases. In case (ii) 
escape to infinity is clearly impossible if the total energy is negative3. Rather less 
obviously, case (i) establishes that positive total energy is sufficient to ensure escape. 
Since we have already deduced that the shape of the trajectories are the conic 
sections, we can conclude that case (i) gives parabolic or hyperbolic trajectories, and 
case (ii) elliptic or circular orbits.  

To derive the magnitude of M  in terms of the other two constants of the motion, L

 

and E , note that the momentum when mrr

 

is mrLp /  and so,      
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3 This is because, at infinity, the potential energy is zero so the kinetic energy equals the total energy. 
But kinetic energy cannot be negative. 



and mr  is known in terms of L  and E from (19) or (20). Note that M  always points 
from the origin to the perihelion (the point of closest approach, mr ). [The RHS of (21) 
can be shown to always be greater than or equal to zero by making use of (19) and 
(20)]. 

Finally, whilst we have derived the trajectory in the form KM
r
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yet to find the scale factor, . But this is now trivial since 
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using (21), and hence 
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m
. So finally we have obtained the general solution for the 

trajectory as,     
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where mr  is given by (19) or the first of (20). Thus the total energy and the angular 
momentum determine the solution.  

Note that time has played no part in this derivation. The geometry of the trajectory 
can be obtained without considering the equation of motion. But this means, of 
course, that we have not derived the position or the velocity as a function of time. 
Nevertheless, the velocity is known as a function of position. Given , then the radial 
coordinate r follows from (22). Then the component v  of velocity follows from 

mrvL  and the radial component of velocity follows from 2
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Note also that, for closed orbits, (20) and (22) give different but equivalent relations 
between the perihelion distance ( mr ) and the aphelion distance ( Mr ),    
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Only Kepler s third law remains. It may seem that we will have a difficulty with this 
since it involves the period of the orbit, and we have not solved for the temporal 
dependencies. But actually it is no problem. We know that the rate of sweeping out 
area is just mL 2/ , so the period is just LmA /2  where A  is the area of the orbit. 
Because we now know that we are dealing with an ellipse, the area is abA  where 
the semi-major axis is EKrra Mm 2/2/ , from (23), and the semi-minor axis 

can easily be found to be EmLb 2/ . Hence, 
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This establishes Kepler s third law, namely that 32 / a is the same for all planets, only 
if Km /  is independent of the mass of the planet, m . This requires that the constant 
K  in the gravitation force equation, (6), is proportional to the planet s mass. But by 
symmetry the same must be true for the mass of the Sun. So Kepler s third law is seen 



to be equivalent to requiring the gravitational force to be proportional to the product 
of the two masses,      
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where G  is a universal gravitational constant. It is salutary to recall that our 
understanding of the nature of Newton s G  is essentially the same now as it was in 
1687. Where our knowledge has advanced, thanks to Einstein, is in the appreciation 
that (25), which expresses the equivalence of gravitational and inertia mass, can be 
understood to be a consequence of general covariance and the geometrical 
interpretation of gravity.  

So much for Kepler s laws, but what about the question posed at the start of this 
Chapter: given that the trajectories are conic sections, what is the cone? Of course we 
could always contrive a cone which fits any of the orbits. But such cones seem 
arbitrary and without meaning, and there would be a plethora of different cones for 
different trajectories. It would seem crazy to suggest that, in fact, there is one single 
cone whose sections provide every possible orbit, open and closed. This cannot be, 
you argue, since an ellipse of a given eccentricity could arise in any orientation in 
space  and all these ellipses obviously cannot be generated as sections of just one 
fixed cone. Quite true  so long as we confine ourselves to cones in 3D. But let us see 
what happens when we allow ourselves a fourth dimension. Now we can consider a 
cone whose right-sections are spheres rather than circles. Calling the extra dimension 
t  the cone is,     
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Amazingly any orbit is a section of this cone  which is, of course, just the forward 
light cone. Consider the section with respect to the plane tz ,0 constant. Clearly 
this is just a circle in the yx,  plane. But circular orbits in any plane can be generated 
in the same way since (26) involves spheres in the 3-space zyx ,,  and sections of 
spheres with respect to any plane are circles.  

But how are other conic sections produced? To do so the plane which defines the 
section must be tilted so that the t -direction has a non-zero projection onto it. 
Suppose the plane is defined by 0z  and a normal vector n  lying in the xt,  plane. 
If n  is time-like then the orbits are ellipses. If n  is space-like the trajectories are 
hyperbolae. If n  is null the trajectory is a parabola. As with the circular orbits, the 
spatial orientation of the trajectory can be rotated arbitrarily owing to the spherical 
symmetry of (26). So, we can produce any conic section in the 3-space zyx ,,  by this 
means. 

But what is going on here? Just what is the light cone, the epitome of relativistic 
constructs, doing popping up in a non-relativistic problem? You may very well ask! 
These matters run deep. The interested reader should seek a more competent guide, 
such as Guowu Meng (2011) who discovered this simple interpretation of the Kepler 
conic sections, or Guillemin and Sternberg (1990). However, we can give some clue 
as to what might have brought the light cone into the problem. It is down to the magic 
of the Runge-Lenz vector. 

Recall that the Poisson bracket is defined by, 
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We already know what this will yield for the components of the angular momentum 
vector,     

njknkj LLL ,               (28) 

where jkn  is the alternating tensor. With a little tedious algebra the definition of the 

Runge-Lenz vector, (5), leads to,     
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Instead of deriving (28-30) via the Poisson bracket we could equivalently have 
converted the momentum to the quantum mechanical operator by the replacement 

ip , so that L  and M  also become operators [noting that (5) has to be replaced 

with the symmetrised form rKmpLLpM 2/ ]. Equs.(28-30) would then 
hold for the commutators between these operators, with the minor changes that each 
RHS would pick up a factor of i  and the term E  on the RHS of (30) would be 

replaced by the Hamiltonian operator, 
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. Even in the quantum case, 

though, we may confine attention to a sub-space of states with the same energy, E , to 
avoid this latter complication. 

In the case of bound states (elliptic orbits) with 0E , we can adopt a normalised 
Runge-Lenz vector (or operator) such that,     
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So that (28-30) become, adopting the quantum mechanical operator interpretation 
now,     

njknkj LiLL ,               (32)     

njknkj MiLM ,               (33) 

and,    njknkj LiMM ,               (34) 

In (32-34) the reader may recognise the commutators of the six generators of the 
group of rotations in 4-dimensional Euclidean space, the group 4SO . If not, the 

generators of this group can be represented by pxpxL  with the usual 

commutator ipx ,  and where the Greek subscripts here span the range 4,1 . 

The reader can check for himself that these generators reproduce the commutation 
structure of (32-34), specifically with 2/jkijki LL  and 4ii LM  (Latin subscripts 

taking values 1,2,3 only).  

In the case of parabolic or hyperbolic trajectories, with 0E , the normalisation of the 
Runge-Lenz vector (or operator) is, 
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This leads to a minus sign on the RHS of (34) and the resulting commutator structure 
indicates that the group has changed from 4SO , for the bound states, to 1,3SO  for 
the free trajectories. The significance of this is that 1,3SO  is just the connected part 
of the homogeneous Lorentz group. This is the result that we have been working 
towards. The suggestion is that it is the algebraic structure of the L  and M  vectors 
(or operators) which creates the geometrical link with relativity  despite the Kepler 
problem itself being non-relativistic.  

The rather stunning conclusion that the Kepler trajectories are conic sections because 
they are sections of the forward light cone is matched by the equally elegant 
observation that this fact was always lurking in the magic of the Runge-Lenz vector.  
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