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A STRUCTURAL APPROACH TO THE CALCULATION
OF J

R. BRADFORD
Operational Engineering Division, CEGB, Bristol, U.K.

Abstract—The calculation of the elastic—plastic fracture parameter, J, is often assumed to
demand finite element analysis, particularly when the loads applied are secondary, or partly
secondary, in nature, e.g. thermal load. However, it is shown that a simple technique based on
the reference stress approach can be used to calculate J even in these cases. Example results are
given, and compare well with finite element solutions.

INTRODUCTION

IT IS GENERALLY held at the present time that the parameter J of Eshelby[1] and Rice[2] forms
the best means of assessing the likelihood of ductile fracture. Thus, the practising engineering, in
attempting to decide on the acceptability of a given level of cracking, is left with the problem of
calculating J. In the case of linear behaviour and simple geometries, the task of calculating the
stress intensity factor (and hence J) is aided by the existence in the literature of many ‘standard’

solutions. In a similar way, Kumar, German and Shih[3] have given J-estimation schemes in the

non-linear case for a limited range of geometries and stress-strain behaviours. A more general
method of approximating J has been given by Ainsworth et al.[4], and included in the CEGB’s
R6 defect assessment methodology[5].

The most general, and potentially the most accurate, technique for calculating J is the finite
element method. Facilities to perform finite element analyses are now widely available to
engineers, at least as regards elastic analyses. As for elastic—plastic FE analysis, although a great

many useful results have been obtained, the method is still more appropriate to a research’

environment than an engineering environment. This is particularly true beyond general yield
and/or in three dimensions when the problem becomes computationally heavy and may not
converge. Consequently, simple J-estimation procedures such as that of [4] are of considerable
importance. The main shortcoming of this method is that is it applicable only in load controlled
situations in which an appropriate ‘reference stress’ is known.

‘Two types of situation arise in which the reference stress is not known. Firstly, the loading
may be secondary or partly secondary in nature, e.g. applied displacements or thermal strains.
The second possibility, which is really a special case of the first, occurs when the stresses at the
crack location arise due to the requirement of displacement compatibility. In this work we shall
describe how J may be calculated for these cases. The general procedure is described in the next
section, and the following sections give examples of the method when applied to problems of
both the above types.

METHOD OF J ESTIMATION

We firstly describe the method of Ainsworth er al.[4] for the load controlled case. This
method assumes that;
(a) a solution is available for the linear elastic stress intensity factor, K, and,
(b) a limit-load solution is known for the cracked body, giving the value of the load, F,, when
the remaining uncracked ligament generally yields. (Note: F is merely symbolic for whatever type
of loads are acting).

A reference stress, o, is then defined by,

o =(F/F)oy, 0,=0.2% proof stress (1)
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and the elastic-plastic J is approximated by,
J=A(0)K*/E (2)

where K is evaluated at the same load, F, as that for which J is required. The reference stress
function is,

0_3

Ee
A(o) —;4”5}5—6;% (3)

where E = Young’s Modulus, and e is the true uniaxial strain corresponding to a true uniaxial
stress of magnitude o. Note that eq. (2) applies to plane stress. For plane strain the RHS of (2)
should be multiplied by (1 — »?), » = Poisson’s ratio.

We now show how the preceding J-estimation scheme can be used to find the (generalized)
displacement corresponding to the applied loads, provided that these displacements are known (or
negligible) in the uncracked case. For purposes of illustration we shall assume a point load, P, and
a moment, M, conjugate to a displacement, D, and a rotation, 6. The complementary energy
is, :

U=IDdP+J0dM 4)

and the energy-rate interpretation of J gives,

_sU

I=%5

(5)

where S is the crack area, and the derivative is carried out at constant loads, P and M.
Appropriate differentiation and integration of eqs (4) and (5) gives,

D(S) = D(0) + r%ds (6)
s 8J
0(S) = 6(0) + L mds (7)

where all the terms are evaluated at the same loads, P and M. The derivative in (6) is taken at
constant M, and that in (7) at constant P. These equations give the displacement/rotation of the
cracked body for a crack of size S. The first terms on the RHS are the corresponding uncracked
quantities which must be calculated separately. In many cases, the uncracked body would
respond linearly (i.e. yielding is confined to the ligament) and this simplifies the calculation of
D(0), 6(0). The integral terms in (6, 7) give the extra displacement/rotation due to the presence
~of the crack, including the effects of plasticity on the ligament.

Thus, eqs (6, 7) give the (generalized) displacements for a given load level. Since (2} gives J
for a given load, this allows J to be found at a specified displacement. The following sections
illustrate the use of this technique in several example problems.

CENTRE CRACKED PLATE

The geometry for this problem is shown in Fig. 1. The plate is subjected to a thermal load
which consists of heating the outer edges, thereby causing the inner (cracked) part to be in
tension. In addition, a uniform tensile stress is applied at the ends of the plate. The assumed
material data is given in Fig. 2. The coefficient of linear expansion is @ = 12 X 107%/°C. Both the
mechanical and the thermal load, if applied alone to the uncracked body, would give rise to
stresses of oy, ie. the proportionality limit stress.
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Fig. 1. Centre-cracked plate geometry showing the temperature distribution and the mechanical
tensile load.

To facilitate the analysis, the actual problem is replaced by a simplified problem in which the
hot and cold regions are treated as separate plates. The latter are assumed connected at their
ends to a rigid cross-beam, so that the extension (D) of each is the same. Thermal loading is thus
transmitted to the central part as simple tension, rather than shear across the hot-cold interface
as is actually the case. For small cracks, where the compliance factor is little larger than unity,
this idealization is probably reasonable. Clearly it will be grossly in error when 2a = 1.

We now develop the theory for this simplified problem using the following notation:

Cy = current (tangential) stiffness of central part,
2 = current (tangential) stiffness of outer parts (sum of both),
D = common displacement of all parts,
F =total force on beam = F, + F,,
Fy =load currently carried by the central part,
F, = load currently carried by the outer parts (sum of both).
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Fig. 2. Stress—strain data employed.

Remembering that the outer parts may expand due to an applied temperature change (AT), we
(8)

have,
AF1 = C]AD
9)

AF, = Cy(AD - aLAT)

where A denotes a small change. For the outer parts, the tangential stiffness is simply the slope of

the material stress—strain curve, suitably normalized,
Btz do
C=— (—) 10
2= 7 \ae), (10)

where the subscript denotes evaluation at the current stress (0> = F,/Bp,) in the outer parts.
In the case of the central region, the tangential stiffness must depend upon the crack length.

From the general theory developed above it is clear that differentiation of an equation like (6)
with respect to load will give the tangential flexibility (reciprocal of tangential stiffness). For the
a 2]

(11)

1 1
- +2BI 2 d
Ci(a) Cy(a=0) o 8F7% ¢

present problem this gives,

where C,(a =0) is the uncracked tangential stiffness evaluated at the same load (F;) as Ci(a)

and is given by an expression similar to (10), i.e.
(12)

Bt /d
b ( U) (evaluated at o, = Fy/Bt) .
1

Cl(a=0)=~f a’;‘

J is the “energy rate” for the central part alone,
(13)

1 /(éu
J= 2B (3;) constant Fy, u = I DdF,

and is known in terms of the central load, Fy, from eqs (2, 3). In this case, we use, for the

reference stress,
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o=—21 (14)

(1-5)

and for the stress intensity (K) we use a standard solution for a centre-cracked plate of width ¢,
which, for 2a/t; = 0.1 gives,

K =1.0050Vma. (15)
Finally, adding equations, (8) and (9) gives,
(Ci+ C)AD =AF +aLCAT. (16)

Hence, since C; and C, are known in terms of the current stress state, AD may be found for any
specified load increment (i.e. given AF and AT). The stress increments, Aoy, and Ao, are then
found from eqs (8) and (9).

The results are plotted in Figs 3 and 4, essentially giving J as a function of applied load. The
load has been normalized as,

L= oolfi + f2) ‘ a7

2a
Uy(l ——Il—)

where f; and f, are the fractions of the total mechanical and thermal load applied. Similarly, the
ordinate is the dimensionless quantity,

K = [ J{elastic) ]“2. (18)

J(elastic—plastic)

For comparison, the R6 assessment diagram[5] is also included in Figs 3 and 4. More
importantly, these figures also include the results of a finite element analysis of the same problem
due to Muscati[6]. The agreement between the finite element results and the present method is
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Fig. 3. Results plotted in R6 format thermal-then-mechanical (nominal applied stresses o).
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Fig. 4. Results plotted in R6 format mechanical-then-thermal (nominal applied stresses o).

good, particularly at the highest loads. The reference stress method errs on the conservative
side, i.e. overestimates J. At the full (mechanical + thermal) load, the unnormalized results for
the elastic—plastic stress intensity, i.e. v EJ, are as shown in Table 1. In passing we note that at
applied load levels higher than oy, the reference stress method gives a clear prediction of a
load-order dependence. This is illustrated in Table 1 for the case when the nominal (plastic)
stress which would arise due to either load separately is raised to o,.

CIRCUMFERENTIALLY CRACKED CYLINDER

In this example, a thin cylinder containing a fully circumferential uniform, internal crack is
subjected to an axial tensile stress and, simultaneously, a thermal load. The latter consists of a
linear, axial temperature distribution, increasing from zero at a symmetry plane where the
internal circumferential crack is introduced, see Fig. 5. If the symmetry condition (U, =0 on
z = () were relaxed, then zero stresses would result and the deformation would be as shown in
Fig. 5. Thus, the thermal load can be considered (at least for a thin cylinder) as equivalent to an
applied rotation of 6 = afr at the symmetry plane. When this plane is cracked, the rotation
applies to the ligament only, and hence corresponds to a smaller bending moment (M). Note:

a = coefficient of linear expansion,
B = axial temperature gradient,
r = mean cylinder radius = (r; + ry)/2,
t = ro— r; = thickness,
M = moment per unit circumference (2r),
N =force per unit circumference.

Table 1. Full load results for centre cracked plate

Nominal Mechanical then Thermal then
Method stress thermal mechanical
Finite Elements oo 152.3 153.5
(ref. [6]) ¢
Present method 0o 151.0 150.7
Present method ay 267.1 211.8

Values are for VEJ, MPavm.
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Fig. 5. Geometry and thermal load (for cylinder).

This problem has also been analysed by Muscati[6] using the finite element method. To allow
comparison, we use the same numerical data,

r=500, =50, half-length=1250mm
a =46 X 107%/°C, crack depth, a = 18.6 mm (a/t=0.372)

whilst the stress-strain data is the same as for the previous problem (Fig. 2).

The magnitude of the applied thermal load, B, specifies the equivalent rotation, 6.
However, the reference stress formula for J, (2), applies only for a known load, so that the
problem is to find M. This is accomplished using equation (7), which in the present case reads,

0(a, M, N) = 0(0, M,N)+[ 9 4a (19)
\ aM

where the derivative 8J/aM is carried out at constant tension (N) and crack depth (a). Thus, eq.
(19) allows the moment-rotation behaviour to be found, so long as the uncracked response is
known. Note that, since J depends upon N as well as M, @ will also depend upon both loads.
Thus, for a given thermal load (i.e. a fixed 6), applying a small amount of tension (N) leads to a
decrease of bending moment, M.

For simplicity we shall assume that the loads M and N which act on the ligament are
restricted to values for which the uncracked cylinder would respond linearly. The standard
solution for a semi-infinite cylinder is then,
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Table 2. LEFM Compliance factors (cylinder)

a/t km kb
0 1.122 1.122
0.1 1.157 1.012
0.2 1.252 0.957
03 1.390 0.924
0.4 1.570 0.890
0.5 1.780 0.890
0.6 2.025 0.941
M 31—v?) EP
6(0, M, N) = =, A=[ —-] . D= 20
0. M, N)= 55 ey 12(1 -7 (20)

(independent of N).
To find J for given loads N and M we require K and reference stress values for substitution
into eqs (2, 3). For the former we use,

K= knomVma, o,= ; (21)
Kb = kb(rb\/m'a, Oy = 6t—’24 (22)
K=K, +K, (23)

where the compliance factors are given in Table 2. We are interested in the case of a dominant
thermal (bending) load, with a relatively small tension. An appropriate limit solution gives a
reference stress,

_ 1.09g2M + N1
T = )X P+ 1.686a1—2.72a))

(24)

where the parameter q varies according to the relative amount of bending and tension, and is
given in Table 3. Thus, we can now calculate the moment-rotation curves, as shown in Fig. 6, for
specified tensile loads.

Figure 7 plots J against load, firstly for a thermal load up to 1°C/mm, and then an axial
tension applied whilst the thermal load is held constant at 1°C/mm. Note that general yielding at
a level of oy occurs at a thermal load of about 0.5°C/mm. Figure 7 also shows the finite element
results of Muscati[6], which are in good agreement with the present results, differing by only
~3% in J at 100% thermal load. Moreover, the increase in J caused by the subsequent tension

Table 3. g-Function for limit solution

yt q
0 1.588
0.1 1.4
0.2 1.2
0.32 1.0
0.4 0.9
0.485 0.795
0.55 0.732
0.61 0.72
0.68 0.743
0.788 0.81
1.0 1.0
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Fig. 6. Bending moment at ligament vs applied thermal gradient (cylinder).

is consistent between the two methods. This is noteworthy since the bending moment, M, is
known to fall as a result of applying the tension at fixed B (see Fig. 6), so that the change in Jis a
result of the competition between increasing N and decreasing M. Numerical results for J are
given in Table 4. It is of interest that reasonable agreement (4%) is obtained in the elastic
regime, since, even in this case, the crack causes a substantial increase in the flexibility [i.e. the
second term in eq. (19) is significant].

BEAM CRACKED AT BOTH BUILT-IN ENDS

The geometry for this final example is shown in Fig. 8(a). Cracks of depth a exist on the top
surfaces of both ends of a beam of length I, loaded by a point load of 2F in its centre. The
uncracked ligaments are subject to bending and shear stresses, as shown in Fig. 8(b). Yielding is
assumed to be confined to a small region around the ligaments, i.e. in Fig. 8(b) the limit h— 0 is
to be understood. The elastic response of the rest of the beam produces a rotation at the ends of,

0=aF - M (25)
where
3P 6l

=268 P~ EBP (26)

o
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This must be compatible with the elastic—plastic rotation of the vanishingly small regions of
length h, whose rotation is given by eq. (7). In this case, the limit A— 0 ensures that the
uncracked term is zero. Hence, equating (7) and (25) gives,

.- - 27)

Because the stressing is mixed-mode, the stress intensity for substitution into eq. (2) is,

Table 4. Comparison of J resulting from present method and finite elements[6]

(cylinder)
Thermal J J

load Applied N/mm N/mm

B tension Present Finite %

°C/mh MPa method elements[6] Difference

0.05 0 0.263 0.274 4.0
0.15 0 2.409 2.480 29
0.35 0 14.49 15.34 5.5
0.65 0 52.0 51.65 -7
0.75 0 64.9 659 1.5
0.85 0 78.0 80.7 34
0.95 0 922 05.9 39
1.0 0 100.3 103.7 33
1.0 3.5 103.0 105.8 2.7
1.0 7 106.3 108.0 1.6
1.0 10.5 107.6 110.2 2.3
1.0 14 107.4 112.4 4.4
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K?=K?+ K%, (28)
where
6M
KI = kl —l;ti \/wa (29)
F
Kﬂ = knE\/’ﬂ'ﬂ (30)

and the compliance factors, k; and ky, are given in Table 5. For the limit load we use, for
illustration, a plane strain, upper bound Mises solution, which gives a reference stress,

U=[(132(.1‘7—51:14)2)2+3(B(t1ia))2] " G
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Table 5. Elastic compliance factors (beam)

alt ky, knt

0 1.122 1.0

0.05 1.070 1.001
0.1 1.045 1.004
0.15 1.041 1.009
0.2 1.054 1.017
0.25 1.08 1.027
03 1.123 1.040
0.35 1.182 1.056
0.4 1.255 1.075
0.45 1.36 1.099
0.5 1.50 1.128
0.55 1.673 1.164
0.6 191t 1.208
0.65 2.25 1.264
0.7 2.73 1.336
0.75 3.46 1.432
0.8 4.69 1.565
0.85 7.0 1.766
0.9 12.5 2.113
0.95 34.4 2918
0.99 377 6.4

0.375

T Asymptotic value —

(70"

Thus, eqs (28-31) allow J to be found from eqs (2, 3) for given M and F. Substitution into eq.
(27) therefore produces an equation which implicitly gives M in terms of the applied load (2 F).
An example result is shown in Fig. 9 for the case, !=1000mm, {=100mm, B =10 mm,
a =75 mm and using the same material data as above (Fig. 2). These dimensions lead to bending
stresses which are substantially larger than the shear stresses in the elastic regime. At higher
loads, the bending moment falls below its elastic value due to plastic relaxation. This is because
the bending moment is secondary in the sense of not being required by equilibrium alone. It is,

/
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Fig. 9. Bending moment acting on ligament as a function of applied load.
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perhaps, surprising that relaxation occurs to the extent of leading to a decreasing moment for
reference stresses greater than o,. However the origin of this behaviour can be seen by
differentiating eq. (27), giving,

3T
am 7B .[aFaMda
dF A (32)
+ —
p+B J a]Mzda

Although the second term in the numerator is zero elastically, in the plastic regime it is non-zero
and typically increases rapidly with the reference stress. Consequently, a zero of the derivative,
i.e. a maximum in M, is to be expected. However, as a caution, we note that the theory presented
here applies strictly only for non-linear elasticity, i.e. reversible behaviour, and the situation may
be different for truly plastic (irreversible) materials. Finally, Fig. 10 plots the normalized J in R6
format against the normalized applied load. For comparison the ‘Option-2’ R6 diagram is also
shown, [5]. The difference is due to the relaxation of the (secondary) bending moment, which,
for the largest applied loads becomes negligible. J is generally smaller than its elastic value,
rather than being larger as would be the case for primary stressing.

CONCLUSIONS

The foregoing examples have shown that the reference stress approximation for J, (2, 3), may
be employed in situations where the loading is secondary, or partly secondary, in nature. The
resulting analytic procedure for estimating J is simple to use and has the advantage that it lends
physical insight into the problem, unlike numerical techniques. The procedure is analogous to
classical structural analysis in that the problem is first simplified by the introduction of a small
number of load-resultants (e.g. shearing force and bending moment). The method should
therefore appeal to practising engineers for the purposes of application.
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