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Persistence of the HRR fields for general yielding in mode 11
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Abstract

The finite element program BERSAFE is used to analyse an edge-cracked square plate under mode II loading in
the elastic-plastic regime. Plane strain constraint and power law hardening with n =3 are assumed. Crack tip
stress and strain fields are investigated and shown to equal the HRR fields at all loads from small scale yielding
through into general yielding.

1. Introduction

In the case of linear elastic fracture mechanics (LEFM), and confining attention to
stressing in a single mode, the stresses, o, , and strains ¢, s sufficiently close to the crack
tip can be written in the form,

aij’fiszF,j'((r’a) (1)
where r, @ are the polar crack tip co-ordinates, and K is the LEFM stress intensity.
(Subscripts on K and F denoting the mode have been supressed.) The case for considering
a critical value of K to be a material property characterising fracture lies in the fact that
the LEFM functions F¢ are independent of body geometry and loading, providing the
mode is unchanged. Consequently, two dissimilar bodies subject to the same K will be
subject also to identical crack tip fields. In as far as fracture is a response to those crack
tip fields, both bodies, composed of the same material, will fracture at the same value of
K.

By analogy with the LEFM case, one might initially hope, from a position of ignorance,
that in the general elastic-plastic case some functions g/ might exist such that, suffi-

ciently close to the crack tip, the plastic fields take the form,
oij’eij=gidj‘£(r50"]) (2)

where J is some scalar parameter, and where the functions g/;“ are universal in the sense
that they do not depend upon the body geometry or the loading (beyond the proviso that
the mode is unchanged), although they may depend upon material behaviour. The only
essential difference between (1) and (2) is that in (2) we have not assumed the crack tip
fields to respond linearly to the applied load, and hence have written J (as yet undefined)
inside the function g. It is important to realize that the actual functional dependence of
the g-functions on r, § and J is of no consequence. The case for regarding a “critical”
(characteristic) value of J to represent the occurrence of fracture/crack growth lies only in
the universality of the g-functions.

Unfortunately, in the general case, such universal g-functions either do not exist or do
not accurately represent the crack tip fields over a region sufficient in extent to encompass
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that in which metallurgical events leading to crack growth (the “process zone™) take place.
Within the process zone, the g-functions may depend both upon the body geometry and
the magnitude of the applied load. However in the special case of small scale yielding,
when the plastic zone around the crack tip is small compared to all other relevant
dimensions, the g-functions will be universal as long as the load is sufficiently small to
maintain the assumption of small scale yielding. This follows because in this case the
plastic zone will be surrounded by an elastic region in which the LEFM fields apply, and
these fields effectively constitute a boundary condition determining the plastic crack tip
fields. The universality of the latter then follows from that of the former. In the case of
power law hardening with index n, the universal small-scale yielding plastic fields can be
written,

ij7€ij:G1[;‘((r/‘]a 07’1) (3)

)

and are known as the HRR fields after the originai authors, Hutchinson [1], and Rice and
Rosengren [2]. In this expression we have taken J to be the path integral of Eshelby [3]
and Rice [4].

As the load is increased so that yielding becomes large scale or general, the process
zone fields cannot be assumed to retain the form given by (3). (From now on we are
assuming power law hardening.) Although this cannot be assumed in general it is
nevertheless the case that some geometries do retain the crack tip field dependence given
by (3) even well into general yielding. Thus, for mode I edge-cracked bend geometries this
has been demonstrated using finite element techniques by McMeeking and Parks [5], Shih
and German [6] and Needleman and Tvergaard [7]. From these analyses it follows that a
characteristic value of J(J;) determines the initiation of crack growth in bend specimens
provided that the size of the uncracked ligament, L, obeys, roughly,

257,

o

L>

(4)

where o, is a suitable “yield” stress. (It is, perhaps, necessary to point out that [5] and [7]
use a finite strain formulation in which crack tip geometry changes cause departures from
the HRR fields, (3), since the latter have been derived assuming the infinitesimal strain
formulation. However, the important point is that the observed fields are universal.)

The same analyses have also shown that for Centre Cracked Panels (CCP) in tension
the crack tip fields start to deviate from their small scale yielding forms at relatively lower
loads. For this geometry J; is the characterising property only if the ligament L exceeds,
roughly,

200J.
L> - (5)

On

This is sometimes expressed by saying that the CCP geometry, or the associated J; value, is
“valid” when (5) is obeyed.

In this work the crack tip fields are derived, using the finite element program
BERSAFE [8,9], for an edge-cracked square plate under mode II (shear) loading. The
object of the analysis is to determine whether the crack tip fields in general yielding are
equal to the HRR fields, (3). From the foregoing discussion, this is of direct relevance to
the feasibility of obtaining valid mode II toughness values for relatively tough, ductile
materials, from tests on small specimens. The nature of the loading assumed is rather
idealized and probably not easily achievable experimentally, although convenient for
academic purposes. However, the present results should form a useful preliminary to the
study of more realistic specimen geometries.
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2. The finite element model

The elastic-plastic finite element program BERSAFE [8,9] has been used. This program
uses an infinitesimal strain formulation, incremental plasticity and isotropic hardening.
Stress-strain data are supplied as a discrete set of points, and in uniaxial form. In this
work, power law hardening with n = 3 is assumed, as follows,

0,3

€ Eo? for e>¢, (6)
where €, o are the uniaxial (tensile) strain and stress, £ is Young’s modulus (210 x 10°
MPa) and ¢, is the proportionality-limit stress (taken as 210 MPa). Elastic behaviour is
given by e =g /E for € < ¢, and hence ¢; = 0,/E = 107°. In the elastic regime Poisson’s
ratio, », was set to 0.3. The von-Mises (J,) yield criterion was used, and plane strain
constraint was assumed.

Figure 1(a) shows the outer part of the mesh employed. This represents a square plate
with an edge crack whose tip lies at the centre of the plate. Loading is accomplished by
applying a uniform shearing traction over the face AB, and an equal and opposite shear
across face CD. The resulting moment is reacted by fixing the faces BC and DA in the y
(but not the x) direction. This fixing includes the nodes on both sides of the crack mouth,
but no other crack surface nodes. The midside node of face BC is fixed in the x direction
to remove the rigid body degree of freedom. In the absence of the crack, this loading
would result in uniform pure shear throughout the whole mesh. In this sense, the loading
geometry represents an academic ideal.

The mesh is taken to be of side (W) 100 mm with crack length @ = 50 mm and of 1 mm
thickness. Inside the central crack tip region of Fig. 1(a) fits the refined sub-mesh shown

/ Size 100 mm square

imm thick

crack
mouth

Figure 1(a). Finite element mesh, outer mesh.
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in Fig. 1(b), which in turn contains the sub-mesh of Fig. 1(c). The mesh is therefore highly
refined in the sense that the ratio of the mesh size to the crack tip element size is very large

(100 mm + 0.5 pm = 2 X 10°). On the other hand only 96 elements have been used. These
are 8 noded, quadrilateral, isoparametric elements with quadratic shape functions.

N

ack  ———e—

Figure 1(b). Finite element mesh, refined region.

aack ———e=

/

Figure 1(c). Finite element mesh, very refined crack tip region.




Persistence of the HRR fields 89

3. Loading record and calculation of J

Shear stress (r) was applied in 104 increments of 1 MPa each. General yield of the
ligament occured at an applied shear (75, ) of 82 MPa, at which load the mean shear ()
across the ligament was 164 MPa. This compares to the shear yield stress of 1, = g,/ V3 =
121 MPa. The load-displacement curve is shown in Fig. 2. The displacement plotted is the
x displacement of the face AB relative to the fixed midside node of face BC. Because the
x-displacement varies along the face AB, a weighted mean (conjugate) displacement has
been defined for which the work done 3U in increasing the conjugate displacement by 8D
is given by,

SU=2F3D (7)
and F is the total load on face AB.

A second analysis was performed, to the same maximum load of 104 MPa, using an
increased crack length of a =355 mm (a/W =0.55). The mesh for this analysis was
obtained from that of Fig. 1(a) by translating the refined region along the x-direction by 5
mm, the geometry of the crack tip elements, therefore, being the same for the two
analyses. The fracture parameter J is then evaluated using the identification

J=—03U/34)p, Iie,
_ U(a/w=0.50) - U(a/W=0.55)

7 > (8)
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Figure 2. Load-displacement curve.
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where U refers to the same conjugate displacement for the two crack lengths, and J applies
roughly to the mean crack length (g = 52.5 mm). Note that J = —3U/94), is rigorously
true only for deformation theory (non-linear elasticity). However, for monotonic loading
using incremental theory our calculation of J should be quite accurate. The results are
given in Table 1. To calculate J at a/w = 0.50 a small correction has been applied based
on the elastic results at a/w = 0.50 and 0.55. The fracture parameter K, is defined as,

K,=\/ J (LEFM) (9)

J (elastic-plastic)

where the two J’s are evaluated at the same applied load (7). Note that the elastic results
give a normalized stress intensity factor, K/ mra , of 1.38 for a /w=10.525.

Interestingly, J is very accurately proportional to the square of the displacement up to
general yield, as shown in Fig. 3. Consequently, J equals J (LEFM) up to general yield as
long as’these quantities are evaluated at the same displacement. In contrast, at the general
yield load (7 = 75, = 82 MPa), J (LEFM) is only 60% of J. The close agreement of J with
J (LEFM) when evaluated at the same displacement has been noted previously, e.g., by
Riccardella and Swedlow [12] for a centre crack tension geometry.

4. Crack tip fields

Figures 4 and 5 plot the shear stress and engineering shear strain along the ligament
(8 = 0) against the normalised distance from the crack tip, R = ro,/J. Also shown in these
figures are the HRR fields as given by Shih [10] for the same conditions as assumed in our
analysis (i.e., mode II, infinitesimal strain theory, n = 3 power law hardening and plane
strain constraint). Apart from a slight degree of scatter, the FE data at all the loads
plotted, from 7 = 50 MPa to 104 MPa, lie on the same curve and agree well with the HRR
fields. It was also verified that the HRR fields were obeyed for smaller loads, i.e., for
plastic zones, extending over less than 30% of the ligament. The latter constitutes a check
of the finite element program’s ability to correctly evaluate the crack tip fields, since, in
small scale yielding, the HRR field is the known solution.

In practice, the process zone is likely to be very much smaller than the R < 55 range
plotted in Figs. 4 and 5. The process zone will probably be contained within a region of
size R <5, and possibly even within R <1, {5,6,7,11]. Consequently the shear stress and

Table 1. Elastic-plastic fracture parameters

T J(0.525) J(0.50) J(0.50) /0, T /o /TGy Kr

MPa N/mm N,/mm pm a/W=0525
10.1 0.140 0.129 0.614 0.175 0.129 0.995
20 0.561 0.517 2.46 0.347 0.255 0.985
30 1.30 1.20 5.71 0.521 0.382 0.969
40 2.44 2.24 10.69 0.695 0.510 0.945
50 4.08 3.76 17.89 0.868 0.637 0.912
54 4.89 4.50 21.44 0.938 0.688 0.900
56 5.34 4.92 23.42 0.972 0.713 0.894
60 6.15 5.66 27.0 1.042 0.764 0.892
70 9.40 8.66 41.2 1.215 0.892 0.842
80 14.04 12.93 61.6 1.389 1.019 0.787
90 21.01 19.35 92.1 1.563 1.146 0.724
98 28.31 26.07 124.1 1.702 1.248 0.679

104 35.31 32.52 154.8 1.806 1.325 0.645
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Figure 3. J versus square of displacement up to general yield only.

engineering shear strain on # = 0 have been plotted in Figs. 6 and 7 within the distance
R <5 of the crack tip. The FE data still agree quite well with the HRR fields, although the
scatter is greater. It is not suprising that a finite element technique produces greater
scatter at closer proximity to the crack tip. The FE strains below about R = 0.4 are smailer
than the HRR values, but this is almost certainly a result of FE inaccuracy. Figures 8 and
9 plot the -components of stress and strain on § = 45° against R, together with the HRR
fields from [10], within R < 5. The FE results are again in good agreement with the HRR
fields at all loads, apart from some random scatter.

Some confidence that the scatter in Figs. 4-9 is numerical in origin may be gained by
noting that alternate data points (at a given load), which correspond to corner and
midside nodes, tend to form separate populations, the one lying at larger stress/strain
than the other. As remarked above only a rather small number of elements were used in
the mesh and hence adjacent elements near the crack tip have significantly different sizes
in order to achieve the very small crack-tip element size. It is therefore to be expected that
the use of a larger number of elements, reducing the size-ratio of adjacent elements, would
tend to make the corner and midside node results converge, and hence to reduce the
scatter.

5. Conclusions

The above results have shown that, for the mode II loading analysed, the crack tip fields
are uniquely determined by the single parameter J for loads beyond general yielding
(Tyvax/Toy = 1.27) and equal to the HRR fields. This demonstrates that an initiation
value of J may, in principle, form a valid measure of the toughness of a ductile material in
mode II in the same way as for mode I, even when obtained from tests carried beyond
general yield. However, there are three provisos to add to this.

(a) Firstly we have studied only one loading geometry, and this idealized loading may
be hard to approximate in the laboratory. Furthermore, achievable geometries may
give significantly different results. Analysis of practical geometries is therefore
desirable, and will hopefully form the basis of future work.

(b) Assuming the above loading to be achievable, the present analysis has been
extended only to loads such that Lg,/J = 320 (where L = 50 mm is the ligament
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size). Thus, for the suggested size of specimen, and for g, =210 MPa, validity has
been demonstrated only up to toughnesses of 87 MPa Vm. For tougher materials it
would be useful to analyse a larger load. However, in Figs. 4 to 9 there is no sign of
the FE results starting to drift away from the HRR fields at the larger loads, and
hence it is probable that validity could be demonstrated for Lo,/J substantially less
than 320. However, it is sensible to leave this refinement for the analysis of an
achievable geometry. The present work has confirmed the possibility, in principle,
of valid mode II toughness J-testing in the general yield regime.

(c) Lastly, the present analysis has been confined to an idealized hardening behaviour
with n=3. A more stringent test of validity would involve the use of a larger n.
Alternatively, a realistic stress-strain relation could be employed, rather than a
power law 1dealization, since this is clearly the case of interest. However, this has the
disadvantage that no independent calculation of the small scale yielding field for
such material behaviour may be available for purposes of comparison. This also will
be the subject of future work.
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Résumé

Le programme d’éléments finis BERSAFE est utilisé pour I'analyse d’une plaque carrée fissurée a ses bords et
sourise en régime élastoplastique a une sollicitation de mode 11. On suppose un état plan de déformation et un
écrouissage régi par une loi de puissance n = 3. On étudie les champs de contraintes et de déformations a
Iéxtrémité des fissures et on montre que ces champs sont équivalents a ceux décrits par Hutchinson, Rice et
Rosengren (HRR) pour toute la gamme de mise en charges allant de la plastification locale de faible envergure &
la plastification généralisée.



