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Abstract 

It is well known that there is an integral theorem for quaternion-valued functions analogous 

to Cauchy’s Theorem for complex-valued functions, namely Fueter’s Theorem. The class of 

quaternionic functions for which this applies are generally referred to as “regular functions”, 

and these provide the most productive means of generalising the class of holomorphic 

complex functions. This paper derives a second integral theorem, also analogous to Cauchy’s 

Theorem, and which is believed to be quite distinct from that of Fueter, despite appearances. 

The paper takes the opportunity to present the basis of the derivation of both theorems, and 

also their extension to the associated classes of right-regular and conjugate regular functions. 

Both theorems can also be extended into the biquaternionic domain in which the four 

quaternion coordinates may be complex valued. This is of interest in physics as the Hermitian 

biquaternions have a natural norm which is Minkowskian and provide an elegant formalism 

for Lorentz transformations.  

Introduction 

It is a curious fact that neither Hamilton nor his immediate followers in the mid-nineteenth 

century developed the analysis of quaternionic functions in a manner analogous to that of 

functions of a complex variable. The power of the latter, key to much of the power of 

mathematical analysis, depends largely on restricting attention to a particular class of 

functions of a complex variable, namely the holomorphic functions. Possibly the reason for 

Hamilton’s neglect of this approach was because the most obvious generalisation of the 

complex holomorphic condition is the existence, for function 𝑓, of a function 𝑔 such that 

𝑑𝑓 = 𝑔𝑑𝑧 where 𝑧 is the independent complex variable. Interpreting these quantities instead 

as quaternions, this condition becomes a constraint so severe that only functions linear in all 

four coordinates of 𝑧 can meet it (and only a subset of those). Such a class of functions is so 

narrow as to be of little interest.  

Apparently it was Fueter (1935,1936) who first realised that the generalisation of the concept 

of a holomorphic function into the quaternionic domain was more productively realised by 

generalising the Cauchy-Riemann conditions and by noting that (𝜕𝑥 + 𝑖𝜕𝑦)𝑓 = 0 for the 

complex domain is extended into the quaternionic domain as (𝜕𝑤 + 𝐼𝜕𝑥 + 𝐽𝜕𝑦 + 𝐾𝜕𝑧)𝑓 = 0, 

thus defining “regular” quaternionic functions.  

Fueter derived an integral theorem respected by such regular functions and which can be 

regarded as analogous to Cauchy’s Theorem for holomorphic complex functions. The natural 

expression of such integrals, essentially geometrical integrals, is in terms of exterior forms so 

that all such integral theorems, including Cauchy’s Theorem, are derived from the Stokes-

Cartan theorem, ∮ 𝐹
𝜕𝐶

= ∫ 𝑑𝐹
𝐶

. In the quaternion domain the manifold 𝐶 is 4-dimensional, 

which implies that 𝐹 must be a 3-form. This is why it will not do to impose 𝑑𝑓 = 𝑔𝑑𝑧 with 𝑔 

a function (a 0-form) as it implies that the relevant 𝐹 = 𝑑𝑓 is a 1-form. Instead, the property 

of regularity emerges as equivalent to a definition of the “derivative” as an identity between 

two 3-forms (see below).  

Useful review articles have been published by Deavours (1973), Sudbery (1979), and Fokas 

and Pinotsis (2007). These discuss the derivation of Fueter’s Theorem, as well as the 



conditions under which the Taylor or Laurent series exist, together with a corresponding 

residue theorem and a generalisation of Liouville’s Theorem.  

The purpose of the present paper is to derive a new class of integral theorems for regular 

quaternionic functions. At first sight these may appear to be but a small step away from 

Fueter’s Theorem, and hence not fundamentally new. However, on closer inspection it is not 

clear (to this author, at least) how one can be derived directly from the other. Moreover, the 

key property of both theorems is their independence of integration surface, and this boundary 

independence is shown to arise in different ways for the two theorems.  

The opportunity is taken to discuss the extension into the biquaternion domain of both this 

new integral theorem and Fueter’s Theorem. The relevance of this in physics is that the 

Lorentz transformation of Minkowski spacetime is elegantly expressed in terms of Hermitian 

biquaternions, Lambek (2013). Also, functions which obey the corresponding extension of 

regularity, namely (𝜕𝑤 + 𝑖[𝐼𝜕𝑥 + 𝐽𝜕𝑦 + 𝐾𝜕𝑧])𝑓 = 0, obey the wave equation. In the 

biquaternion case, integration necessary takes place on the argand plane. The integration 

contour will require careful definition with respect to which poles of the integrand are 

included and which excluded from the closed contour.  

Quaternion and Biquaternion Notation 

The general quaternion is composed of four real components, or coordinates, 𝑤, 𝑥, 𝑦, 𝑧, 

   𝑞 = 𝑤 + 𝑥𝐼 + 𝑦𝐽 + 𝑧𝐾        (1) 

where the basis quaternions obey 𝐼2 = 𝐽2 = 𝐾2 = 𝐼𝐽𝐾 = −1, and hence are non-

commutative, e.g, 𝐼𝐽 = −𝐽𝐼 = 𝐾, etc. The general biquaternion can also be written as (1) but 

the four coordinates 𝑤, 𝑥, 𝑦, 𝑧 may now be complex valued. The quaternion-conjugate is 

defined as,  

   𝑞# = 𝑤 − 𝑥𝐼 − 𝑦𝐽 − 𝑧𝐾      (2) 

which contrasts with the usual complex conjugate, which is, 

   𝑞∗ = 𝑤∗ + 𝑥∗𝐼 + 𝑦∗𝐽 + 𝑧∗𝐾      (3) 

A quaternion may be written 𝑞 = 𝑣𝑡 + �̅�, where 𝑣𝑡 is a real number (or a complex number in the 

biquaternion case) and �̅� = 𝑣𝑥𝐼 + 𝑣𝑦𝐽 + 𝑣𝑧𝐾 in which the basis quaternions play the part of a 

coordinate basis of unit vectors. Hence, the part of a quaternion dependent upon 𝐼, 𝐽, 𝐾 is referred to as 

the vector part whilst the rest is the scalar part. The product of two quaternions is, 

   𝑎𝑏 = (𝑎𝑤𝑏𝑤 − �̄� ⋅ �̄�) + (𝑎𝑤�̄� + 𝑏𝑤�̄� + �̄� × �̄�)    (4) 

and hence produces the usual scalar (dot) product and the vector (cross) product of vectors 

automatically as a consequence of the quaternion algebra, as well as the multiplication of a vector by 

a scalar. (4) gives (𝑎𝑏)# = 𝑏#𝑎#. Quaternions have the natural squared-norm, 

   𝒩(𝑎) = 𝑎𝑎# = 𝑎#𝑎 = 𝑎𝑤
2 + |�̄�|2 = 𝑎𝑤

2 + 𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2  (5) 

All quaternions except zero therefore have a positive-definite squared-norm, whilst this is not 

the case for biquaternions. Quaternions therefore form a division ring because all non-zero 

quaternions have an inverse, which is given explicitly by 𝑎−1 = 𝑎#/𝒩(𝑎). This is precluded 

for biquaternions because 𝒩(𝑎) may be zero, and hence biquaternions do not form a division ring, 



some biquaternions having no inverse, e.g., 1 + 𝑖𝐼 does not (where 𝑖 has its usual interpretation in 

complex numbers as the commuting form of √−1).  

In terms of a unit vector, �̂� = 𝐼𝑛𝑥 + 𝐽𝑛𝑦 + 𝐾𝑛𝑧 where 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1, an arbitrary 

quaternion can be written in “polar” form, 

   𝑎 = 𝑟𝑒𝜃�̂� = r(𝑐𝑜𝑠( 𝜃) + �̂� 𝑠𝑖𝑛( 𝜃))     (6) 

and this prescription is unique within the ranges 𝑟 ≥ 0,  0 ≤ 𝜃 < 𝜋 if �̂� is allowed to roam over 

all eight octants. The original reason for Hamilton’s interest in quaternions was that rotations 

in Euclidean ℝ3 can be written 𝑝 → 𝑝 = 𝑞𝑝𝑞−1 for an arbitrary quaternion, 𝑝, in terms of the 

unit quaternion 𝑞 = 𝑒𝜃�̂�, and hence 𝑞−1 = 𝑒−𝜃�̂�, where �̂� is the axis of rotation and 𝜃 is the 

angle of rotation.  

A particular class of biquaternions are the Hermitian biquaternions, defined by 𝑞∗ = 𝑞#, or, 

equivalently, 𝑞#∗ = 𝑞. Hermitian biquaternions can be written in terms of four real 

coordinates, 𝑞𝜇, as 𝑞 = 𝑞𝑡 + 𝑖�̅�, where �̅� = 𝑞𝑥𝐼 + 𝑞𝑦𝐽 + 𝑞𝑧𝐾. The squared-norm of an 

Hermitian biquaternion is, 

   𝒩(𝑞) = 𝑞𝑞# = 𝑞#𝑞 = 𝑞𝑡
2 − |�̄�|2 = 𝑞𝑡

2 − (𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2)  (7) 

Hence, unlike quaternions which have a natural Euclidean norm, (5), the Hermitian 

biquaternions have a natural Minkowskian norm, (7). Note that in (7) we have changed the 

notation for the fourth coordinate from 𝑤 to 𝑡 in recognition that the physical interpretation as 

time is now possible. Consequently, events in Minkowskian spacetime may be represented as 

Hermitian biquaternions. It follows that the transformation of an arbitrary Hermitian 

biquaternion, 𝑝, defined by, 

    𝑝 → 𝑝′ = 𝑞𝑝𝑞∗#        (8) 

where 𝑞 is any biquaternion with unit norm (i.e., with 𝑞#𝑞 = 𝑞𝑞# = 1) is a Lorentz 

transformation. If we write 𝑞 = 𝑢 + 𝑖𝑣, where 𝑢 and 𝑣 are (real) quaternions, then 𝑞 is a 

rotation if it is a quaternion (i.e., real, hence 𝑣 = 0) whereas 𝑞 is a boost if it is Hermitian, 

i.e., if 𝑢 is purely scalar and 𝑣 is purely vector, i.e., �̅� = 0, 𝑣𝑡 = 0.  

Hermitian biquaternions have a natural expression as exponentials. Any spacetime event at a 

timelike 4-vector displacement from the origin can be represented as 𝑝 = 𝑡 + 𝑖�̅� and written 

as, 

   𝑝 = 𝑟𝑒𝑖𝜃�̂� = 𝑟(𝑐𝑜𝑠ℎ(𝜃) + 𝑖�̂�𝑠𝑖𝑛ℎ(𝜃))     (9) 

Similarly, any spacetime event at a spacelike 4-vector displacement from the origin can be 

represented as 

   𝑝 = 𝑖𝑟𝑒
(

𝜋

2
+𝑖𝜃)�̂�

= 𝑟(𝑠𝑖𝑛ℎ(𝜃) + 𝑖�̂�𝑐𝑜𝑠ℎ(𝜃))    (10) 

where the real unit vector, �̂�, is allowed to roam over all eight octants. All spacetime events can 

be uniquely represented in the form (9) or (10) within the range 0 ≤ 𝜃 < ∞ with 𝑟 allowed to 

take any value on the real line, positive or negative. Events at a null (light-like) displacement from the 

origin are obtained in the limit 𝜃 → ∞.  

Regular Functions 

Until further notice we confine attention to quaternions, i.e., with real coordinates.  



Complex holomorphic functions are defined by the existence of a derivative, so that the 

complex valued function 𝑓 is said to be holomorphic in the neighbourhood of a point 𝑧 in the 

Argand plane if there exists 𝑔 such that,  

     𝑑𝑓 = 𝑔𝑑𝑧                (11) 

This has the implication that the quotient 𝑑𝑓/𝑑𝑧 is the same, namely 𝑔, irrespective of the 

direction from which the limiting point is approached. Writing 𝑓 = 𝑓𝑥 + 𝑖𝑓𝑦 where 𝑓𝑥 and 𝑓𝑦 

are real, this identifies holomorphic functions as those respecting the Cauchy-Riemann 

equations, 

    𝑓𝑥,𝑥 = 𝑓𝑦,𝑦 and 𝑓𝑥,𝑦 = −𝑓𝑦,𝑥              (12) 

and hence that holomorphic functions obey Laplace’s equation in ℝ2,  

    ∇2
2𝑓 ≡ (𝜕𝑥

2 + 𝜕𝑦
2)𝑓 = 0               (13) 

The failure of the nineteenth century mathematicians to develop the analysis of quaternionic 

functions in an analogous manner might be due to the following fact. Suppose we define a 

class of quaternion valued functions in a manner directly analogous to (11), i.e., that a unique 

derivative, 𝑔, exists with respect to the change in quaternionic coordinates, 𝑑𝑞, such that 

𝑑𝑓 = 𝑔𝑑𝑞 irrespective of the direction in ℝ4 from which the limiting point in ℝ4 is 

approached. This is readily seen to be a constraint so severe that only functions linear in all 

the coordinates of 𝑞 can meet it (and only a subset of those). Such a class of functions is so 

narrow as to be of little interest. 

Apparently it was Fueter (1935,1936) who first realised that the generalisation of the concept 

of a holomorphic function into the quaternionic domain was more productively realised by 

generalising the Cauchy-Riemann conditions, (12), and by noting that these can be written as 

a single, complex valued, equation as(𝜕𝑥 + 𝑖𝜕𝑦)𝑓 = 0. Hence, the quaternionic differential 

operator, 𝐷, is defined by analogy as, 

    𝐷 = 𝜕𝑤 + 𝐼𝜕𝑥 + 𝐽𝜕𝑦 + 𝐾𝜕𝑧 ≡ 𝜕𝑤 + ∇̅             (14) 

where ∇̅ is understood to be the usual vector operator but in quaternionic form. Hence a 

quaternion valued function of the four real variables 𝑤, 𝑥, 𝑦, 𝑧 is said to be “regular” in some 

domain of ℝ4 if throughout that region it obeys, 

    𝐷𝑓 = 0                 (15) 

The term “regular” is used rather than “holomorphic” to distinguish condition (15) from 

condition 𝑑𝑓 = 𝑔𝑑𝑞. Unlike the complex case, the latter condition does not follow from the 

former. We shall shortly present the correct quaternion analogue of 𝑑𝑓 = 𝑔𝑑𝑞. 

 The quaternion conjugate operator 𝐷# ≡ 𝜕𝑡 − ∇̅ is such that the Laplacian in ℝ4 can be 

written ∇4
2= 𝐷#𝐷 = 𝐷𝐷#. Hence it immediately follows from the definition, (15), that 

regular quaternion functions obey Laplace’s equation in ℝ4, ∇4
2𝑓 = 0. This generalises the 

naturally harmonic nature of holomorphic complex functions. 

We can also define a conjugate-regular function by 𝐷#𝑔 = 0, which also obey ∇4
2𝑔 = 0. Note 

that 𝐷#𝑔 does not in general equal either (𝐷𝑔)# or 𝐷#𝑔#.  

Regular functions will also be called “left regular” because we have, 



    𝐷𝑓 = 𝜕𝑡𝑓 + 𝐼𝜕𝑥𝑓 + 𝐽𝜕𝑦𝑓 + 𝐾𝜕𝑧𝑓 = 0             (16) 

i.e., the basis quaternions stand on the left of the function. We can also define for later 

purposes the right-regular functions which obey, 

    �̃�𝑓 ≡ 𝜕𝑡𝑓 + 𝜕𝑥𝑓𝐼 + 𝜕𝑦𝑓𝐽 + 𝜕𝑧𝑓𝐾 = 0             (17) 

Note that an alternative notation would be �̃�𝑓 ≡ 𝑓�⃐�  , where the arrow denotes that the 

derivatives operate on the function to the left, whereas, for the purposes of the quaternion 

content, the operator stands on the right. We shall see that both left and right regular functions 

play a key role in the most cogent explanation of the origin of Fueter’s Theorem.  

Similarly, conjugate-right-regular functions obey, 

    �̃�#𝑓 ≡ 𝜕𝑡𝑓 − 𝜕𝑥𝑓𝐼 − 𝜕𝑦𝑓𝐽 − 𝜕𝑧𝑓𝐾 = 0             (18) 

So we have (𝐷𝑔)# ≡ �̃�#𝑔# and (�̃�𝑔)
#

≡ 𝐷#𝑔#. Right-regular functions and conjugate right-

regular functions also obey Laplace’s equation, ∇4
2𝑔 = 0. 

All the above differential operators, and the definition of “regular” functions, are appropriate 

for use with quaternion-valued functions, i.e., with real coordinates. Their extension to 

biquaternions, and hence to the Minkowski metric, will be addressed later.  

Quaternion Geometrical Integrals 

It is instructive to recall how the derivation of the holomorphic integral theorem for complex 

functions arises from the Stokes-Cartan Theorem. The latter states that, 

    ∮ 𝐹
𝜕𝐶

= ∫ 𝑑𝐹
𝐶

                (19) 

where 𝐹 is a smooth (𝑛 − 1)-form and 𝑑 is to be understood as the exterior derivative, so that 

𝑑𝐹 is a 𝑛-form. In (19) 𝐶 is a simply connected orientable 𝑛-dimensional manifold and 𝜕𝐶 is 

its (𝑛 − 1) dimensional boundary. Hence, for 𝑛 = 2 and 𝐶 a planar Euclidean manifold, (19) 

becomes Green’s Theorem, whilst if 𝑛 = 2 and the 2-surface 𝐶 is embedded within a three-

dimensional Euclidean manifold, (19) yields the original Stokes’ Theorem. Using 𝑛 = 3 and 

𝐶 is a region of a three-dimensional Euclidean manifold, (19) produces Gauss’s Theorem (the 

divergence theorem on 3D). 

The holomorphic integral theorem is what Green’s Theorem implies for a complex function, 

𝑓, for which (11) holds. This is sufficient to imply the Cauchy-Riemann conditions, (12), 

which can also be written 𝐷𝑐𝑓 = 0 where 𝐷𝑐 = (𝜕𝑥 + 𝑖𝜕𝑦). The 1-form to be inserted into 

the LHS of (19) is 𝐹 = 𝑓𝑑𝑧 = 𝑓𝑑𝑥 + 𝑖𝑓𝑑𝑦. Hence on the RHS of (19), 

 𝑑(𝑓𝑑𝑧) = 𝑑𝑓⋀𝑑𝑥 + 𝑖𝑑𝑓⋀𝑑𝑦 = (𝜕𝑦𝑓)𝑑𝑦⋀𝑑𝑥 + 𝑖(𝜕𝑥𝑓)𝑑𝑥⋀𝑑𝑦 = 𝑖(𝐷𝑓)𝑑𝑥⋀𝑑𝑦 = 0      (20) 

Hence, (19) becomes the holomorphic integral theorem ∮ 𝑑𝑓
𝜕𝐶

= 0 and Cauchy’s Theorem 

quickly follows. In order to generalise this approach to quaternions we shall need an integral 

which encloses a region in ℝ4, i.e., an integral over a 3-surface. Hence, if (19) is to be 

deployed, the 𝐹 on the LHS must be a 3-form and the resulting 4-form 𝑑𝐹 on the RHS can 

only be proportional to the natural volume element, 𝑉𝑞 = 𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧. What, then, can 

the 3-form 𝐹 be if it is to depend only upon the quaternion function, 𝑓, and the quaternion 

manifold itself?  



Hence we see why the sensible analogue of the “derivative” of a complex function, namely 𝑔 

in 𝑑𝑓 = 𝑔𝑑𝑧 (a 1-form), cannot for quaternions be 𝑑𝑓 = 𝑔𝑑𝑞 because this is also a 1-form 

whereas a 4-form is needed, namely a function (a 0-form) times 𝑉𝑞 = 𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧. The 

solution to this conundrum is that the sensible (or productive) definition of the “derivative” of 

a quaternionic function is the 𝑔 in, 

    
1

2
𝑑(𝑑𝑞⋀𝑑𝑞𝑓) = 𝑆𝑞𝑔                (21) 

where 𝑆𝑞 is the natural 3-surface element in quaternion space, namely, 

  𝑆𝑞 = 𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧 − 𝐼𝑑𝑤⋀𝑑𝑦⋀𝑑𝑧 − 𝐽𝑑𝑤⋀𝑑𝑧⋀𝑑𝑥 − 𝐾𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦            (22) 

and 𝑞 is the position quaternion, (1), so that the 1-form 𝑑𝑞 is the identity mapping. The four 

terms in 𝑆𝑞 can be interpreted as the projections of the 3-surface onto the axes 𝑤, 𝑥, 𝑦, 𝑧 

respectively. The wedge product 𝑑𝑞⋀𝑑𝑞 is a little startling at first because it would be 

identically zero for real coordinates. This is not so in the quaternionic case because 

quaternions do not commute. Instead we have,  

1

2
𝑑𝑞⋀𝑑𝑞 =

1

2
(𝑑𝑤 + 𝐼𝑑𝑥 + 𝐽𝑑𝑦 + 𝐾𝑑𝑧)⋀(𝑑𝑤 + 𝐼𝑑𝑥 + 𝐽𝑑𝑦 + 𝐾𝑑𝑧) 

   = 𝐼𝑑𝑦⋀𝑑𝑧 + 𝐽𝑑𝑧⋀𝑑𝑥 + 𝐾𝑑𝑥⋀𝑑𝑦               (23) 

which can be interpreted as the natural 2-surface element within the 3-dimensional 𝑥, 𝑦, 𝑧 

spatial subspace of quaternion space. The imposition of (21) as a condition on 𝑓 is equivalent 

to the definition of a regular function via (14,15), i.e., being regular ensures that a 

“derivative”, 𝑔, satisfying (21) exists, and vice-versa. This is shown by explicit evaluation of 

the LHS of (21) as follows, 

1

2
𝑑(𝑑𝑞⋀𝑑𝑞𝑓) = 𝑑(𝐼𝑑𝑦⋀𝑑𝑧𝑓 + 𝐽𝑑𝑧⋀𝑑𝑥𝑓 + 𝐾𝑑𝑥⋀𝑑𝑦𝑓) 

= 𝐼𝑑𝑦⋀𝑑𝑧⋀(𝑓,𝑤𝑑𝑤 + 𝑓,𝑥𝑑𝑥) + 𝐽𝑑𝑧⋀𝑑𝑥⋀(𝑓,𝑤𝑑𝑤 + 𝑓,𝑦𝑑𝑦) + 𝐾𝑑𝑥⋀𝑑𝑦⋀(𝑓,𝑤𝑑𝑤 + 𝑓,𝑧𝑑𝑧) 

= (𝐼𝑑𝑤⋀𝑑𝑦⋀𝑑𝑧 + 𝐽𝑑𝑤⋀𝑑𝑧⋀𝑑𝑥 + 𝐾𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦)𝑓,𝑤 + 𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧(𝐼𝑓,𝑥 + 𝐽𝑓,𝑦 + 𝐾𝑓,𝑧) 

= (𝐼𝑑𝑤⋀𝑑𝑦⋀𝑑𝑧 + 𝐽𝑑𝑤⋀𝑑𝑧⋀𝑑𝑥 + 𝐾𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦)𝑓,𝑤 + 𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧∇̅𝑓             (24) 

If we assume that 𝑓 is regular, i.e., that (15) requires 𝐷𝑓 = (𝜕𝑤 + ∇̅)𝑓 = 0 then the 

expression (24) becomes, 

 [(𝐼𝑑𝑤⋀𝑑𝑦⋀𝑑𝑧 + 𝐽𝑑𝑤⋀𝑑𝑧⋀𝑑𝑥 + 𝐾𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦) − 𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧]𝑓,𝑤 = −𝑆𝑞𝑓,𝑤            (25) 

 i.e., (21) is established with 𝑔 = −𝑓,𝑤 = ∇̅𝑓, the “derivative” of 𝑓. Conversely, if (21) is 

taken as the defining condition, then requiring that (24) is an identity with 𝑆𝑞𝑔 requires the 

regularity condition, (15).  

In the same way it is readily checked that a conjugate-regular function obeying 𝐷#𝑓 =

(𝜕𝑤 − ∇̅)𝑓 = 0 is equivalent to 
1

2
𝑑(𝑑𝑞⋀𝑑𝑞𝑓) = 𝑆𝑞

#𝑔 and hence to the existence of a 

“derivative”, 𝑔 = 𝑓,𝑤 = ∇̅𝑓. Regular and conjugate-regular functions are thus interchangeable 

by reversal of the Euclidean “time” coordinate, 𝑤.  



That the 2-surface element 
1

2
𝑑𝑞⋀𝑑𝑞 stands to the left of 𝑓 in (21) is crucial to the above 

results. Reversing the order is readily seen to provide a condition equivalent to the function 

being right-regular, (17), i.e., 

    
1

2
𝑑(𝑓𝑑𝑞⋀𝑑𝑞) = 𝑔𝑆𝑞 ⇔ �̃�𝑓 = 0              (26) 

And similarly conjugate-right-regular functions, (18), have 
1

2
𝑑(𝑓𝑑𝑞⋀𝑑𝑞) = 𝑔𝑆𝑞

#.   

The Quaternionic Analogue of the Holomorphic Integral Theorem 

In the complex domain the holomorphic integral theorem is what results from (19,20), which 

explicitly is, 

    ∮ 𝑓𝑑𝑧
𝜕𝐶

= 0                 (27) 

for any closed contour, 𝜕𝐶, in the Argand plane and for any function which is holomorphic 

everywhere within, and on, 𝜕𝐶. As we now know that the natural quaternionic 3-form (or 3-

surface element) is 𝑆𝑞, (22), the quaternion analogue of (27) is expected to be, 

    ∮ 𝑆𝑞𝑓
𝜕𝑉

= 0                 (28) 

where 𝜕𝑉 is the boundary of any simply connected region, 𝑉, in quaternion ℝ4 space and 𝑓 is 

any function which is regular everywhere within, and on, 𝜕𝑉. The order of the two terms in 

(28) is important because they do not commute. (Reversing order will be considered below). 

To establish (28), note that the Stokes-Cartan Theorem, (19), tells us that, 

     ∮ 𝑆𝑞𝑓
𝜕𝑉

= ∫ 𝑑(𝑆𝑞𝑓)
𝑉

               (29) 

Hence (28) is immediately established because 𝑑(𝑆𝑞𝑓) = 0 for a regular function, which can 

be seen as follows, using, from (22), that 𝑑𝑆𝑞 = 0,  

𝑑(𝑆𝑞𝑓) = 𝑆𝑞𝑑𝑓 

= (𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧 − 𝐼𝑑𝑤⋀𝑑𝑦⋀𝑑𝑧 − 𝐽𝑑𝑤⋀𝑑𝑧⋀𝑑𝑥 − 𝐾𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦)⋀(𝑓,𝑤𝑑𝑤 + 𝑓,𝑥𝑑𝑥 + 𝑓,𝑦𝑑𝑦 + 𝑓,𝑧𝑑𝑧) 

= −𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧(𝑓,𝑤 + 𝐼𝑓,𝑥 + 𝐽𝑓,𝑦 + 𝐾𝑓,𝑧) = −𝑉𝑞𝐷𝑓               (30) 

which is zero for a regular function because 𝐷𝑓 = 0. QED.  

Similarly, for conjugate-regular functions, ∮ 𝑆𝑞
#𝑓

𝜕𝑉
= 0 because ∮ 𝑆𝑞

#𝑓
𝜕𝑉

= ∫ 𝑑(𝑆𝑞
#𝑓)

𝑉
 and 

𝑑(𝑆𝑞
#𝑓) = −𝑉𝑞𝐷#𝑓 = 0. And for right-regular functions, ∮ 𝑓𝑆𝑞𝜕𝑉

= 0 because 𝑑(𝑓𝑆𝑞) =

(�̃�𝑓)𝑉𝑞 = 0, and so, for conjugate-right-regular functions, ∮ 𝑓𝑆𝑞
#

𝜕𝑉
= 0.  

Existence and Quaternionic Analysis 

We have not been explicit about the conditions under which all the above quantities exist. It is 

not the purpose of this brief note to address this in detail, nor the relevance of these 

conditions to broader aspects of quaternionic analysis. However a few remarks are 

appropriate.  

It is sufficient to ensure that the Stokes-Cartan Theorem holds, and hence the existence of the 

integrals derived herein, to assume that all partial derivatives exist and are continuous. 



However, these results hold in more general circumstances. Sudbery (1979), quoting Schuler 

(1937) as the source, claims that (28), and by implication the generalisations of Cauchy’s 

Theorem in the following sections, only requires the existence of the partial derivatives, 

though perhaps restricted to rectifiable boundaries. Sudbery goes on to claim that, 

“From this it follows, as in complex analysis, that if 𝑓 is regular in an open set 𝑈 then it has a 

power series expansion about each point of 𝑈. Thus, pointwise differentiability, together with 

the four real conditions, (15), on the sixteen partial derivatives of 𝑓, is sufficient to ensure 

analyticity.” 

Hence, a vista opens in which quaternionic analysis may be as rich as complex analysis, 

supporting Taylor or Laurent series, and an associated residue theorem, as well as a 

generalisation of Liouville’s Theorem. The latter establishes that any regular quaternionic 

function which is bounded across the whole of quaternion ℝ4 space is a constant. For further 

details on these matters see Deavours (1973) or Fokas and Pinotsis (2007).  

Fueter’s Theorem 

We are now interested in obtaining quaternionic generalisations of Cauchy’s Theorem for 

complex holomorphic functions. The latter is, 

    ∮
𝑓

𝑧−𝑧0
𝑑𝑧

𝜕𝐶
= 2𝜋𝑖𝑓(𝑧0)               (31) 

where 𝜕𝐶 is any closed contour which fully contains the point 𝑧0 and 𝑓 is any function which 

is holomorphic everywhere inside, and on, 𝜕𝐶. The contour independence of the integral, 

providing it continues to fully enclose 𝑧0, follows immediately from (27) because the 

integrand 
𝑓

𝑧−𝑧0
 is holomorphic everywhere other than 𝑧0. The value of the integral then 

follows by explicit evaluation on a limiting circular contour shrinking onto point 𝑧0.  

To extend to the case of regular quaternion functions, by analogy this means finding an 

appropriate function, 𝐻, which must be singular at a single isolated point, 𝑞0, to factor into 

the integrand of ∮ 𝑆𝑞𝑓
𝜕𝑉

 so that,  

(i) on a limiting surface which shrinks onto 𝑞0 the integral evaluates to a finite, non-zero 

numerical constant times 𝑓(𝑞0 ), and,  

(ii) the integral is independent of the boundary, 𝜕𝑉, provided that point 𝑞0 is fully contained.  

The latter requirement is equivalent to the modified integral being zero for any closed surface 

which fully excludes 𝑞0. 

The distinction between Fueter’s Theorem, to be presented in this section, and the theorem 

which is the subject of this paper, to be presented in the following section, lies in the different 

approaches to how condition (ii) is achieved. Presentations of Fueter’s Theorem often do not 

spell out the reason for the integration being surface independent. Fueter’s Theorem fulfils 

the two conditions using the following integral, for a left-regular function, 𝑓, 

    ∮
(𝑞−𝑞0)−1

𝒩(𝑞−𝑞0)
𝑆𝑞𝑓(𝑞) =

𝜕𝑉
2𝜋2𝑓(𝑞0)              (32) 

The value of the constant can be found by considering 𝜕𝑉 to be a 3-sphere of radius 𝑟 centred 

on 𝑞0, with the limit 𝑟 → 0 in mind. The auxiliary function 
(𝑞−𝑞0)−1

𝒩(𝑞−𝑞0)
 is of order 

1

𝑟3
 which 



cancels with the 𝑟 dependence of the surface element 3-form, 𝑆𝑞, so the resulting integral is 

finite and non-zero. Detailed evaluation shows that it reduces simply to the surface area of a 

3-sphere of unit radius, i.e., 2𝜋2.  

However, the interesting feature of (32) is how its surface independence arises. This is due to 

the following theorem: if 𝑔 is a right-regular function and 𝑓 is a left-regular function, then the 

following integral is identically zero, 

    ∮ 𝑔(𝑞)𝑆𝑞𝑓(𝑞)
𝜕𝑉

= 0                (33) 

independent of the closed boundary, 𝜕𝑉. This is established by showing that the exterior 

derivative of the integrand is zero, 𝑑(𝑔𝑆𝑞𝑓) = 0, and once again applying the Stokes-Cartan 

Theorem, (19). Note that the order of the terms in (33) is crucial; the 3-form surface element 

must be sandwiched between the two functions, as will be clear from the proof - which is 

simple, as follows. 

𝑑(𝑔𝑆𝑞𝑓) = (𝑑𝑔) ∧ 𝑆𝑞𝑓 + 𝑔𝑆𝑞 ∧ (𝑑𝑓) 

= (𝑔,𝑤𝑑𝑤 ∧ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 − 𝑔,𝑥𝐼𝑑𝑥 ∧ 𝑑𝑤 ∧ 𝑑𝑦 ∧ 𝑑𝑧 − 𝑔,𝑦𝐽𝑑𝑦 ∧ 𝑑𝑤 ∧ 𝑑𝑧 ∧ 𝑑𝑥 − 𝑔,𝑧𝐾𝑑𝑧 ∧ 𝑑𝑤 ∧ 𝑑𝑥 ∧ 𝑑𝑦)𝑓 +

𝑔(𝑑𝑤 ∧ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧𝑓,𝑤 − 𝐼𝑑𝑥 ∧ 𝑑𝑤 ∧ 𝑑𝑦 ∧ 𝑑𝑧𝑓,𝑥 − 𝐽𝑑𝑦 ∧ 𝑑𝑤 ∧ 𝑑𝑧 ∧ 𝑑𝑥𝑓,𝑦 − 𝐾𝑑𝑧 ∧ 𝑑𝑤 ∧ 𝑑𝑥 ∧ 𝑑𝑦𝑓,𝑧)  

= (𝑔,𝑤 + 𝑔,𝑥𝐼 + 𝑔,𝑦𝐽 + 𝑔,𝑧𝐾)𝑉𝑘𝑓 + 𝑔𝑉𝑘(𝑓,𝑤 + 𝐼𝑓,𝑥 + 𝐽𝑓,𝑦 + 𝐾𝑓,𝑧) 

= (�̃�𝑔)𝑉𝑘𝑓 + 𝑔𝑉𝑘𝐷𝑓 = 0                   (34) 

The last step follows from the assumption that 𝑔 is right-regular, �̃�𝑔 = 0, and that 𝑓 is left-

regular, 𝐷𝑓 = 0. Note that the basis quaternions, 𝐼, 𝐽, 𝐾, must be kept sandwiched between 

the 𝑔 and 𝑓 terms throughout in order for (34) to hold, hence the importance of the order of 

the three terms in (33). 

It remains to be shown that the function, 

    𝐻(𝑞 − 𝑞0) =
(𝑞−𝑞0)−1

𝒩(𝑞−𝑞0)
=

(𝑞−𝑞0)#

|𝑞−𝑞0|4
              (35) 

which appears in (33) is left-regular. In actual fact this function is unusual in being both right-

regular and left-regular. The simplest demonstration of regularity is to note that this function 

can be written, 

    𝐻(𝑞) =
𝑞#

|𝑞|4
= −𝑒−𝑤∇̅ (

�̅�

𝑟4
)               (36) 

where 𝑞 is given by (1), i.e., 𝑞 = 𝑤 + �̅�, so that 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2. (36) can be shown by 

first showing �̄��̄� = −3, and for integral 𝑛 that ∇̄ (
1

𝑟𝑛) = −𝑛
�̄�

𝑟𝑛+2, whilst for 𝑛 = 1,3,5, … 

∇̅ (
�̅�

𝑟𝑛+3) =
𝑛

𝑟𝑛+3. Expanding the exponential in (36) and summing the resulting series provides 

the result. That 𝐻 is left-regular now follows immediately because, 

  𝐷𝐻 = −(𝜕𝑤 + ∇̅)𝑒−𝑤∇̅ (
�̅�

𝑟4
) = −(−∇̅ + ∇̅)𝑒−𝑤∇̅ (

�̅�

𝑟4
) = 0             (37) 

That 𝐻 is also right-regular is seen by explicit evaluation of the derivatives using 𝐻(𝑞) =
𝑞#

|𝑞|4
 

which gives, 



  𝜕𝑤𝐻 = −𝐻∇⃖  =
𝑟2+4𝑤�̅�−3𝑤2

|𝑞|6
 hence    𝜕𝑤𝐻 + 𝐻∇⃖  = �̃�𝐻 = 0            (38) 

This completes the proof of Fueter’s Theorem, (32).  

It immediately follows that, for a right-regular function, 𝑓, 

    ∮ 𝑓(𝑞)𝑆𝑞
(𝑞−𝑞0)−1

𝒩(𝑞−𝑞0)
=

𝜕𝑉
2𝜋2𝑓(𝑞0)              (39) 

which exploits the fact that 𝐻 is also left-regular. For conjugate-regular functions, 𝑓, we have, 

    ∮
𝑞−𝑞0

|𝑞−𝑞0|4
𝑆𝑞

+𝑓(𝑞) =
𝜕𝑉

2𝜋2𝑓(𝑞0)              (40) 

whilst for conjugate-right-regular functions, 𝑓, 

    ∮ 𝑓(𝑞)𝑆𝑞
+ 𝑞−𝑞0

|𝑞−𝑞0|4
=

𝜕𝑉
2𝜋2𝑓(𝑞0)              (41) 

An Alternative Cauchy-like Integral Theorem 

The use of theorem (34) to establish a Cauchy-like integral formula is not the most obvious 

approach. More obvious would be to consider the product of the auxiliary function, 𝐻, with 

the regular function, 𝑓, and to seek an integral of the form ∮ 𝑆𝑞𝐻(𝑞 − 𝑞0)𝑓(𝑞)
𝜕𝑉

. This would 

immediately ensure boundary-surface independence if the product 𝐻(𝑞 − 𝑞0)𝑓(𝑞) were 

regular everywhere except at the singular point, 𝑞0. In the case of complex holomorphic 

functions, this approach works because of the chain rule of differentiation. That is, 

(𝜕𝑥 + 𝑖𝜕𝑦)(𝑓𝑔) = [(𝜕𝑥 + 𝑖𝜕𝑦)𝑓]𝑔 + 𝑓(𝜕𝑥 + 𝑖𝜕𝑦)𝑔 

so the product of two holomorphic functions is holomorphic. For regular quaternion functions 

this fails because the chain rule fails due to quaternions not commuting. Thus we cannot in 

general write 𝐷(𝑓𝑔) as (𝐷𝑓)𝑔 + 𝑓𝐷𝑔 because the quaternionic operator cannot be moved to 

the right of the quaternionic function 𝑓. No doubt this is what discouraged Fueter and co-

workers from employing this approach. 

However, there are classes of regular function for which the product is regular. The most 

obvious is when one of the functions is purely scalar, and hence the functions commute. 

However, this is quite useless as a purely scalar function which is also regular must be a 

constant.  

However, there is another class of regular function which proves more useful. It is convenient 

to note, following Hamilton and Graves, that any regular function, 𝑔(𝑤, 𝑥, 𝑦, 𝑧), can be 

written in terms of a “generating function”, 𝐺(𝑥, 𝑦, 𝑧), as follows, 

     𝑔 = 𝑒−𝑤∇̅𝐺                (42) 

That 𝐷𝑔 = 0 follows immediately for any differentiable 𝐺(𝑥, 𝑦, 𝑧), which is, of course, 

simply 𝑔(0, 𝑥, 𝑦, 𝑧). Both 𝑔 and 𝐺 are quaternionic in general.  

We can now prove this theorem: If 𝑔 and 𝑓 are both regular and 𝑔 has a scalar generating 

function, then 𝑔𝑓 is regular. Writing 𝑓 = 𝑒−𝑤∇̅𝐹 together with 𝑔 = 𝑒−𝑤∇̅𝐺, where 𝐺 is scalar, 

we have, 

  𝐷(𝑔𝑓) = (𝜕𝑤 + �̄�)[(𝑒−𝑤�̄�𝐺(𝑥, 𝑦, 𝑧))(𝑒−𝑤�̄�𝐹(𝑥, 𝑦, 𝑧))]             (43) 



We note that 𝜕𝑤 commutes with 𝐺 and 𝐹 but not with the factors 𝑒−𝑤�̄�, whereas �̄� commutes 

with the factors 𝑒−𝑤�̄� but not with 𝐺 or 𝐹 when these are quaternionic Carrying out the 𝑤-

derivatives gives, 

𝐷(𝑔𝑓) = (−�̄�𝑒−𝑤�̄�𝐺(𝑥, 𝑦, 𝑧))(𝑒−𝑤�̄�𝐹(𝑥, 𝑦, 𝑧)) + (𝑒−𝑤�̄�𝐺(𝑥, 𝑦, 𝑧))(−�̄�𝑒−𝑤�̄�𝐹(𝑥, 𝑦, 𝑧)) 

                    + ∇̄[(𝑒−𝑤�̄�𝐺(𝑥, 𝑦, 𝑧))(𝑒−𝑤�̄�𝐹(𝑥, 𝑦, 𝑧))]               (44) 

We now impose the condition that 𝐺 is scalar. In the last term of (44) �̄� now commutes with 

𝐺 and this allows the simple chain rule to hold, �̄�(𝐺𝐹) = (�̄�𝐺)𝐹 + 𝐺(�̄�𝐹), with the result 

that (44) is zero. QED. 

This provides another route to a boundary-independent integral, using ∮ 𝑆𝑞𝑔(𝑞 − 𝑞0)𝑓(𝑞)
𝜕𝑉

 

where 𝑔 has a scalar generating function, 𝐺. We see that the function 𝐻(𝑞) =
𝑞#

|𝑞|4
 deployed in 

the Fueter integral will not do because its generating function is −
�̅�

𝑟4
, (36), which is not 

scalar.  

Considering the integral to be evaluated on a 3-sphere of radius 𝜌 centred on 𝑞0 shows that 

any candidate function must be of the order of 1/𝜌3 as 𝜌 → 0 in order to produce an integral 

which is finite and non-zero. The most obvious candidate, 𝑔 = (𝑞 − 𝑞0)−3, is not regular. 

The regular function formed from it by using a generating function 𝐺 = (�̅� − �̅�0)−3 will not 

do either as this is not scalar (and just reproduces Fueter’s −𝐻(𝑞) = −
𝑞#

|𝑞|4
).  

The next most obvious candidate is to use the generating function 𝐺 = |𝑟 − 𝑟0|
−3 which is 

scalar and hence will produce a boundary-independent integral. However, despite having a singularity 

of the required order at 𝑞0, the integral is identically zero even when the integration surface 

contains 𝑞0, because the angular integrations make it zero. This may be checked directly 

noting that the auxiliary function is then, 

   𝑔 = 𝑒−𝑤∇̅ (
1

𝑟3) =
𝑟2−𝑤2

𝑟(𝑟2+𝑤2)2 +
𝑤(3𝑟2+𝑤2)

𝑟3(𝑟2+𝑤2)2 �̄�              (45) 

In order to prevent the angular integrations being zero, an angular dependence needs to be 

introduced into the generating function whilst ensuring it remains scalar and has a singularity 

of the order of 1/𝜌3 as 𝜌 → 0. The simplest generating function meeting these requirements 

is 
𝑥

𝑟4, or the equivalent with 𝑥 replaced by 𝑦 or 𝑧. Hence we explore the option, 

    𝑔 = 𝑒−𝑤∇̅ (
𝑥

𝑟4)                 (46) 

Explicit evaluation is surprising as this function turns out to be transcendental,            (47) 

𝑔 = 𝑒−𝑤�̄� (
𝑥

𝑟4) =
𝑥

(𝑤2+𝑟2)2 − 𝐼
𝑤

2𝑟2 {
1

𝑤2+𝑟2 +
1

𝑟𝑤
𝑡𝑎𝑛−1 (

𝑤

𝑟
)} + 4𝑥𝑤

�̄�

𝑟4 {
5𝑟2+3𝑤2

8(𝑤2+𝑟2)2 +
3

8𝑟𝑤
𝑡𝑎𝑛−1 (

𝑤

𝑟
)}  

However, because the generating function is scalar, the integral ∮ 𝑆𝑞𝑔(𝑞 − 𝑞0)𝑓(𝑞)
𝜕𝑉

 is 

ensured to be boundary independent for any regular function 𝑓 where 𝜕𝑉 contains 𝑞0, and 

hence the integral is a constant times 𝑓(𝑞0). The constant can be evaluated on any convenient 

boundary. Choosing either a 3-sphere centred on 𝑞0 or the limit of an infinitely long prismatic 



surface oriented parallel to the 𝑤-axis, and with a cross-section which is a 2-sphere, shows 

the constant to be 
2𝜋2

3
𝐼.  

Hence, finally, we have our alternative Cauchy-like integral theorem for any regular 

quaternion function, 𝑓, 

   ∮ 𝑆𝑞 [𝑒−(𝑤−𝑤0)∇̅ (
𝑥−𝑥0

|�̅�−�̅�0|4
)] 𝑓(𝑞)

𝜕𝑉
=

2𝜋2

3
𝐼𝑓(𝑞0)             (48) 

Unlike the Fueter integral, the constant in (48) is factored by the basis quaternion, 𝐼. In this 

respect it is more like the Cauchy integral whose constant also involves a square root of -1, 

i.e., 2𝜋𝑖. By symmetry we also have, 

   ∮ 𝑆𝑞 [𝑒−(𝑤−𝑤0)∇̅ (
𝑦−𝑦0

|�̅�−�̅�0|4
)] 𝑓(𝑞)

𝜕𝑉
=

2𝜋2

3
𝐽𝑓(𝑞0)             (49) 

   ∮ 𝑆𝑞 [𝑒−(𝑤−𝑤0)∇̅ (
𝑧−𝑧0

|�̅�−�̅�0|4
)] 𝑓(𝑞)

𝜕𝑉
=

2𝜋2

3
𝐾𝑓(𝑞0)             (50) 

(We have taken liberties with the notation in that a regular function is not really just a 

function of 𝑞 so 𝑓(𝑞) is a short-hand for 𝑓(𝑤, 𝑥, 𝑦, 𝑧)).  

At first sight it seems that the Fueter integral should be simply derivable from (48-50), by 

multiplying these equations by 𝐼, 𝐽 or 𝐾 respectively and summing the result. This looks 

promising because, 

   −𝑒−(𝑤−𝑤0)∇̅ (
(𝑥−𝑥0)𝐼+(𝑦−𝑦0)𝐽+(𝑧−𝑧0)𝐾

|�̅�−�̅�0|4
)  

is just the Fueter function 𝐻(𝑞 − 𝑞0), (36). The problem with carrying out this programme is 

that the basis quaternions, 𝐼, 𝐽 or 𝐾, cannot be pushed through the 𝑆𝑞 or the 𝑒−(𝑤−𝑤0)∇̅ or the 

𝑓(𝑞) terms in the integrals (48-50) due to lack of commutation. Moreover, to reproduce the 

Fueter integral, (32), the function 𝐻(𝑞 − 𝑞0) must stand to the left of 𝑆𝑞. Perhaps the reader 

can see a way of deriving Fueter, (32), from (48-50), but it is not obvious to the present 

author. 

However, more importantly, it seems even less likely that the reverse derivation can be done. 

Bearing in mind that the boundary independence of the Fueter integral, (32), and that of (48-

50) rely on quite different properties, it seems that (48-50) are genuinely distinct theorems. In 

some respects (48-50) are more akin to Cauchy than (32) in that the product 

[𝑒−(𝑤−𝑤0)∇̅ (
𝑥−𝑥0

|�̅�−�̅�0|4
)] 𝑓(𝑞) is regular except at 𝑞0.  

We derive in the same way the following, 

For conjugate regular 𝑓, 

   ∮ 𝑆𝑞
# [𝑒(𝑤−𝑤0)∇̅ (

𝑥−𝑥0

|�̅�−�̅�0|4
)] 𝑓(𝑞)

𝜕𝑉
=

2𝜋2

3
𝐼𝑓(𝑞0)             (51) 

For right-regular 𝑓, 

   ∮ 𝑓(𝑞) [(
𝑥−𝑥0

|�̅�−�̅�0|4
) 𝑒−(𝑤−𝑤0)∇⃖  ] 𝑆𝑞𝜕𝑉

=
2𝜋2

3
𝑓(𝑞0)𝐼             (52) 

For conjugate right-regular 𝑓, 



   ∮ 𝑓(𝑞) [(
𝑥−𝑥0

|�̅�−�̅�0|4
) 𝑒(𝑤−𝑤0)∇⃖  ]

𝜕𝑉
𝑆𝑞

# =
2𝜋2

3
𝑓(𝑞0)𝐼             (53) 

The auxiliary function in (52) has been written as (
𝑥−𝑥0

|�̅�−�̅�0|4
) 𝑒−(𝑤−𝑤0)∇⃖   to emphasise its status 

as right-regular, but it is identical to 𝑒−(𝑤−𝑤0)∇̅ (
𝑥−𝑥0

|�̅�−�̅�0|4
) due to the generating function being 

scalar and hence the explicit transcendental expression (47) applies.  

Extension to Biquaternions 

Moving now to biquaternions, a spacetime location is specified by an Hermitian biquaternion, 

    𝑞 = 𝑡 + 𝑖(𝑥𝐼 + 𝑦𝐽 + 𝑧𝐾)     (54) 

where we use the symbol 𝑡 for the scalar part as we are now dealing with a natural norm 

which is Minkowskian, and hence 𝑡 can be interpreted as time. 

Biregular Functions 

For biquaternionic functions we introduce the property of biregularity. For this purpose we 

defined the Hermitian operator 𝐷𝐻 = 𝜕𝑡 + 𝑖�̄�, where the subscript 𝐻 denotes “Hermitian”, 

because this operator is such that 𝐷𝐻
# = 𝐷𝐻

∗ = 𝜕𝑡 − 𝑖�̄�. We define a biquaternion-valued 

function, 𝑓(𝑡, 𝑥, 𝑦, 𝑧), to be biregular if, 

    𝐷𝐻𝑓(𝑡, 𝑥, 𝑦, 𝑧) = 0                (55) 

Hence, whereas regular functions obey Laplace’s equation in ℝ4, ∇4
2𝑓 = 0, biregular 

functions obey the wave equation, 

   𝐷𝐻
#𝐷𝐻𝑓 = (𝜕𝑡

2 − ∇3
2)𝑓 = 0               (56) 

Similarly we can define conjugate biregular functions by 𝐷𝐻
#𝑓 = 0, right-biregular functions 

by 𝑓�⃖�  𝐻 = 0 and conjugate right-biregular functions by 𝑓�⃖�  𝐻
# = 0, all of which also obey the 

wave equation, (56).  

Analogous to (42), biregular functions can be written in terms of a generating function as, 

     𝑓(𝑡, 𝑥, 𝑦, 𝑧) = 𝑒−𝑖𝑡�̄�𝑓(0, 𝑥, 𝑦, 𝑧)     (57) 

Similarly conjugate biregular functions can be written 𝑓(𝑡, 𝑥, 𝑦, 𝑧) = 𝑒𝑖𝑡�̄�𝑓(0, 𝑥, 𝑦, 𝑧), whilst right-

biregular functions can be written 𝑓(𝑡, 𝑥, 𝑦, 𝑧) = 𝑓(0, 𝑥, 𝑦, 𝑧)𝑒−𝑖𝑡∇⃖   and conjugate right-biregular 

functions as 𝑓(𝑡, 𝑥, 𝑦, 𝑧) = 𝑓(0, 𝑥, 𝑦, 𝑧)𝑒𝑖𝑡∇⃖  .    

Just as for regular functions, the theorem follows that if 𝑔 and 𝑓 are both biregular and 𝑔 has 

a scalar generating function, then 𝑔𝑓 is also biregular, the proof being as (43,44).  

Biquaternionic Forms 

The natural 3-surface element, or 3-form, is now the Hermitian biquaternion analogue of 

(22), 

 𝑆𝐻 = 𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧 − 𝑖(𝐼𝑑𝑤⋀𝑑𝑦⋀𝑑𝑧 + 𝐽𝑑𝑤⋀𝑑𝑧⋀𝑑𝑥 + 𝐾𝑑𝑤⋀𝑑𝑥⋀𝑑𝑦)            (58) 

whilst the 4-form, or volume element in spacetime, is 𝑉𝐻 = 𝑑𝑡⋀𝑑𝑥⋀𝑑𝑦⋀𝑑𝑧, which is 

formally the same as 𝑉𝑞 as the latter is scalar and hence Hermitian. The key result that permits 

Cauchy-like surface-independent integrals over regular functions to be demonstrated from the 



Stokes-Cartan Theorem, (19), is (30). The analogue holds for biregular functions, noting 

again that 𝑑𝑆𝐻 = 0 so we get, 

    𝑑(𝑆𝐻𝑓) = −𝑉𝐻𝐷𝐻𝑓                (59) 

which is therefore zero for biregular functions. Similarly, for conjugate-regular functions, 

𝑑(𝑆𝐻
#𝑓) = −𝑉𝐻𝐷𝐻

#𝑓 = 0; for left-regular functions 𝑑(𝑓𝑆𝐻) = (𝑓�⃖�  𝐻)𝑉𝐻 = 0, and for 

conjugate left-regular functions 𝑑(𝑓𝑆𝐻
#) = (𝑓�⃖�  𝐻

#)𝑉𝐻 = 0. 

Analogous to the case of regular quaternion functions, the condition (55) that a biquaternion 

function is biregular is equivalent to the existence of a “derivative”, 𝑔, such that,  

    
1

2
𝑑(𝑑𝑞⋀𝑑𝑞𝑓) = 𝑆𝐻𝑔                (60) 

1

2
𝑑𝑞⋀𝑑𝑞 is again given by (23) except for a change of sign. The demonstration that (60) is 

equivalent to (55) follows from 
1

2
𝑑(𝑑𝑞⋀𝑑𝑞𝑓) evaluating to −𝑖𝑆𝐻𝜕𝑡𝑓 if (55) holds, analogous 

to (24,25). 

Cauchy-like Integral Theorems for Biregular Biquaternionic Functions 

It follows that, 

    ∰ 𝑆𝐻 𝑓
𝜕𝑉

(𝑡, 𝑥, 𝑦, 𝑧) = 0     (61) 

for any function which is biregular within and on the closed boundary 𝜕𝑉. To emphasise: this 

follows because the Stokes-Cartan Theorem, (19), shows that this integral is equal to the 

integral over 𝑉 of 𝑑(𝑆𝐻 𝑓) = −𝑉𝐻𝐷𝐻𝑓 = 0.  

We now seek an extension of (48) into the biquaternion domain. Since we require a biregular 

auxiliary function, in view of (57) it is natural to explore, 

    �̃� = 𝑒−𝑖𝑡∇̅ (
𝑥

𝑟4)                 (62) 

as the analogue of (46). As would be expected from the replacement 𝑤 → 𝑖𝑡, the equivalent 

of (47) is, 

�̃�(𝑡, 𝑥, 𝑦, 𝑧) =
𝑥

(𝑡2−𝑟2)2 − 𝑖𝐼
𝑡

2𝑟2 {
1

𝑟2−𝑡2 +
1

𝑟𝑡
𝑡𝑎𝑛ℎ−1 (

𝑡

𝑟
)} +  4𝑖𝑥𝑡

�̄�

𝑟4 {
5𝑟2−3𝑡2

8(𝑡2−𝑟2)2 +
3

8𝑟𝑡
𝑡𝑎𝑛ℎ−1 (

𝑡

𝑟
)}     (63) 

It follows that, as the generating function of 𝑔 is scalar, that 𝑔𝑓 is biregular when 𝑓 is 

biregular, except at the singularity of 𝑔. Hence the integral, 

  ∰ 𝑆𝐻𝑒−𝑖(𝑡−𝑡0)�̄� (
𝑥−𝑥0

|�̅�−�̅�0|4
)

𝜕𝑉
𝑓(𝑡, 𝑥, 𝑦, 𝑧) = 𝜉𝑓(𝑡0, 𝑥0, 𝑦0, 𝑧0)              (64) 

over the boundary of a simply connected region, 𝑉, is independent of 𝑉 provided that the 

singular point, 𝑞0, is fully contained within it, and 𝑓 is biregular everywhere within 𝑉 and on 

its boundary.  

However, we have yet to evaluate the constant 𝜉 or even to demonstrate that it is finite and 

non-zero. There is a problem here that did not arise in the quaternionic case, namely that �̃� is 

not singular only at a point but everywhere on the light cone, i.e., 𝑡2 − 𝑟2 = 0. Because of 

this difficulty we spell out in detail how the integral, 

    𝜉 = ∰ 𝑆𝐻𝑒−𝑖(𝑡−𝑡0)�̄� (
𝑥−𝑥0

|�̅�−�̅�0|4
)

𝜕𝑉
              (65) 



is evaluated. As it stands, (65) is ambiguous. It is made unique, and finite, only by 

acknowledging that it must be interpreted as a contour integral in the Argand plane and the 

path of the contour around the singularities defined.  

Evaluation of (65) on a Long Prismatic Surface 

The origin can be shifted to 𝑞0 without changing the integral. As (65) is independent of the 

integration surface we opt to evaluate it on a prismatic surface defined as follows. 

• Consider a closed 2-surface 𝜕𝑉3 enclosing a 3D region 𝑉3 of the spatial part of 

biquaternion space, i.e., the 3-vector part. This region 𝑉3 is extruded parallel to the time 

axis from −𝑡1 to +𝑡1, with the intention of considering 𝑡1 → ∞. 

• We can take 𝜕𝑉3 to be a spherical 2-surface, centred on 𝑞0 = 0, times 𝑑𝑡. It is therefore 

oriented along the spatial radial direction. 

• The biquaternion integration measure 𝑆𝐻 on the curved cylindrical surface can thus be 

represented in spherical polar coordinates as, 

   𝑆𝐻 → 𝑖(𝐼𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑 + 𝐽𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝐾𝑐𝑜𝑠𝜃)𝑑𝑡𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 

  being careful to note that we will need to integrate along the time coordinate as well as 

over the spherical 2-surface. 

• The curved cylindrical surface is closed by adding ‘end caps’ at times ±𝑡1. These ‘end 

caps’ are simply the spatial 3-volumes 𝑉3 at times ±𝑡1. At +𝑡1 the outward normal is 

positive, whereas at −𝑡1 the outward normal is negative. Hence the integration measure, 
𝑆𝐻, becomes simply 𝑑𝑥𝑑𝑦𝑑𝑧 at +𝑡1 but −𝑑𝑥𝑑𝑦𝑑𝑧 at −𝑡1. 

We now evaluate the integral (65) where the integrand is given by (63), taking the two parts 

in turn. 

End Caps 

The end caps lie at 𝑡 = ±𝑡1 and we are interested in the limit 𝑡1 → ∞. The first term in (63), 

the scalar component, is thus zero on the end caps. The same is true for the first terms within 

each of the two {… }. In the remaining terms the 𝑡𝑎𝑛ℎ−1 (
𝑡

𝑟
) become 𝑡𝑎𝑛ℎ−1(±∞). As the 

integrand is equal and opposite on the two end caps, the two ends do not cancel but add.  

Other than that factor of 𝑡𝑎𝑛ℎ−1(±∞) that leaves us with the requirement to integrate over 

the volume of a sphere of radius 𝜌 the function,  

     −
𝑖𝐼

2𝑟3
+

3𝑖𝑥�̅�

2𝑟5
  

The first term integrates to −2𝑖𝜋𝐼 ∫
𝑑𝑟

𝑟

𝜌

0
 which is divergent. The second term integrates as 

follows, 

 
3𝑖

2
∫

1

𝑟5 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑. 𝑟(𝐼𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑 + 𝐽𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝐾𝑐𝑜𝑠𝜃)𝑟2𝑑𝑟. 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑  

The 𝜑 integral kills the 𝐽 and 𝐾 terms and we are left with, 

 
3𝑖

2
𝐼 ∫

𝑑𝑟

𝑟

𝜌

0
∫ 𝑠𝑖𝑛3𝜃𝑑𝜃

𝜋

0
∫ 𝑐𝑜𝑠2𝜑𝑑𝜑

2𝜋

0
=

3𝑖

2
𝐼 ∙

4

3
∙ 𝜋 ∫

𝑑𝑟

𝑟

𝜌

0
= 2𝑖𝜋𝐼 ∫

𝑑𝑟

𝑟

𝜌

0
  

which cancels with the first term, above. So the end caps integrate to zero. 



Cylindrical Surface 

Considering firstly the scalar term in the integrand, (63), we need to evaluate,  

∫ 𝑖(𝐼𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑 + 𝐽𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝐾𝑐𝑜𝑠𝜃)
𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑

(𝑡2−𝑟2)2 𝑑𝑡 𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃𝑑𝜑  

The 𝜑 integral kills the 𝐽 and 𝐾 terms and we are left with, 

𝑖𝐼 ∫ 𝑠𝑖𝑛3𝜃𝑑𝜃
𝜋

0
∫ 𝑐𝑜𝑠2𝜑𝑑𝜑

2𝜋

0
∫

𝑟3

(𝑡2−𝑟2)2 𝑑𝑡 =
4𝜋

3
𝑖𝐼 ∫

𝑟3

(𝑡2−𝑟2)2 𝑑𝑡
+∞

−∞

+∞

−∞
              (66) 

We will come back to the evaluation of the integral ∫
𝑟3

(𝑡2−𝑟2)2
𝑑𝑡

+∞

−∞
 later as this involves 

careful handling to avoid being divergent due to the singularities that now occur at 𝑡 = ±𝑟. 

We did not have this difficulty when working in Euclidean quaternion space.  

We now show that the two vector parts of (63) both integrate to zero.  

For the first of the vector terms this is immediately clear because it contains no angular 

dependence, and so inevitably integrates to zero over the vectorial integration measure 

oriented parallel to �̂�.  

For the second vector term, its product with the integration measure involves �̂�2 = −1, which 

eliminates the angular dependence of those factors. The remaining angular-dependent terms 

are 𝑥. 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 = 𝑟𝑠𝑖𝑛2𝜃𝑐𝑜𝑠𝜑𝑑𝜃𝑑𝜑 which is killed by the 𝜑 integral.  

Hence, the required integral reduces to just (66). We now need to face the issue of the 

singularity in that integral over 𝑡.  

Evaluation of (66)  

The indefinite integral is, 

  ∫
𝑟3

(𝑡2−𝑟2)2 𝑑𝑡 = ∫
𝑑𝜏

(𝜏2−1)2 =
𝜏

2(1−𝜏2)
+

1

4
𝑙𝑜𝑔 (

1+𝜏

1−𝜏
) 𝜏 =

𝑡

𝑟
             (67) 

However, the integrand is singular at 𝜏 = ±1. If we adopt the principal value, 

 ℙ ∫
𝑑𝜏

(𝜏2−1)2 = 2
∞

−∞
ℙ ∫

𝑑𝜏

(𝜏2−1)2 = 2𝐿𝑖𝑚𝜀→0 (∫
𝑑𝜏

(𝜏2−1)2

1−𝜀

0
+ ∫

𝑑𝜏

(𝜏2−1)2

∞

1+𝜀
)

∞

0
            (68) 

then we find this is divergent as 1/𝜀. However, since this is part of a boundary which is 

required to be closed, the only option is to skirt around the singularities by interpreting them 

as poles in the Argand plane of a complex function.  

Hence we reinterpret the integral to be, 

    ∫
𝑑𝜏

(𝜏2−1)2

∞

−∞
→ ∮

𝑑𝑧

(𝑧2−1)2𝐶
               (69) 

where it is understood that the contour is closed via a semicircle pushed off to infinity in the 

upper half plane. However, there is still an ambiguity in how the integration contour detours 

around the two poles, at 𝑧 = ±1. We choose to define the contour as including the pole at 𝑧 =

+1 but excluding the pole at 𝑧 = −1, as shown in Figure 1. 

  



Figure 1: Integration contour in the Argand plane for (69) 

 

where it is understood that the upper half-circle is pushed to infinity, and hence contributes 

nothing to the contour integral. The contour integral in this limit does, therefore, become the 

desired real integral – but subject to our choice of which pole to include within the contour 

and which to exclude. If either both or neither of the poles are included, the integral would be 

zero as the two poles have equal and opposite residues. If only one pole is included, then 

which is chosen determines the sign of the result but not its magnitude.   

The poles are of second order. Hence the residue at 𝑧 = 1 is given by, 

Residue:  
𝑑

𝑑𝑧
[(𝑧 − 1)2 1

[(𝑧−1)(𝑧+1)]2
]|

𝑧=1
= −2(𝑧 + 1)−3|𝑧=1 = −

1

4
              (70) 

The contour integral is thus 2𝜋𝑖 times this residue, hence −𝑖𝜋/2. (66) thus gives the value of 

the integral (65) to be 𝜉 =
2

3
𝜋2𝐼, exactly the same as the quaternion case, (48). Hence, the 

integral theorem for biregular functions is, 

  ∰ 𝑆𝐻𝑒−𝑖(𝑡−𝑡0)�̄� (
𝑥−𝑥0

|�̅�−�̅�0|4
) 𝑓(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑉
=

2

3
𝜋2𝐼𝑓(𝑡0, 𝑥0, 𝑦0, 𝑧0)            (71) 

Similar equations apply when 𝑥 and 𝐼 are replaced by 𝑦, 𝑧 and 𝐽, 𝐾, of course. In the same 

manner we find the corresponding integral theorems for conjugate biregular, right-biregular 

and conjugate right-biregular functions analogous to (51-53) by replacing (𝑤 − 𝑤0) in the 

exponents with 𝑖(𝑡 − 𝑡0). As one example, for conjugate right-biregular functions we have,   

∮ 𝑓(𝑞) [(
𝑥−𝑥0

|�̅�−�̅�0|4
) 𝑒𝑖(𝑡−𝑡0)∇⃖  ]

𝜕𝑉
𝑆𝑞

# = ∮ 𝑓(𝑞) [𝑒𝑖(𝑡−𝑡0)∇̅ (
𝑥−𝑥0

|�̅�−�̅�0|4
)]

𝜕𝑉
𝑆𝑞

# =
2𝜋2

3
𝑓(𝑞0)𝐼            (72) 

Fueter’s Theorem also extends to biregular functions. The auxiliary function is now,  

    −𝑒−𝑖𝑡∇̅ (
�̅�

𝑟4
) =

𝑖𝑞

|𝑞|4
=

𝑖(𝑡+𝑖�̅�)

(𝑡2−𝑟2)2
               (73) 

So Fueter’s Theorem for a biregular function is, 

   ∰
𝑖(𝑡+𝑖�̅�)

(𝑡2−𝑟2)2
𝑆𝐻𝑓(𝑡, 𝑥, 𝑦, 𝑧)

𝜕𝑉
= 2𝜋2𝐼𝑓(𝑡0, 𝑥0, 𝑦0, 𝑧0)             (74) 

This works because the analogue of (34) continues to apply, i.e., 

    𝑑(𝑔𝑆𝐻𝑓) = (�̃�𝐻𝑔)𝑉𝑘𝑓 + 𝑔𝑉𝑘𝐷𝐻𝑓              (75) 

 



So that, if 𝑔 is a right-biregular function and 𝑓 is a left-biregular function, then the integral 

∮ 𝑔(𝑞)𝑆𝐻𝑓(𝑞)
𝜕𝑉

 is surface-independent and zero if singularities are excluded. As before, the 

auxiliary function, (73), is both left and right biregular, so the theorem (74) applies subject 

only to confirming the value of the constant factor. The required integral is, 

   ∰
𝑖(𝑡+𝑖�̅�)

(𝑡2−𝑟2)2
𝑖�̂�𝑟2𝑑Ω𝑑𝑡 = ∰

(−𝑡�̂�+𝑖𝑟)

(𝑡2−𝑟2)2
𝑟2𝑑Ω𝑑𝑡

𝜕𝑉𝜕𝑉
             (76) 

Opting to evaluate on an infinitely long prismatic surface formed by extruding a spatial 2-

sphere along the time axis, as before, the integrand is zero on the end caps whilst the �̂� term 

integrates to zero over the 2-sphere. This leaves 4𝜋𝑖 ∫
𝑑𝜏

(𝜏2−1)2

∞

−∞
. This reduces to the same 

integral as above, and adopting the same interpretation, ∫
𝑑𝜏

(𝜏2−1)2

∞

−∞
→ ∮

𝑑𝑧

(𝑧2−1)2𝐶
= −𝑖

𝜋

2
  

gives the final result for (76) to be 2𝜋2, confirming (74). 

Evaluation of (65) on a Wide Prismatic Surface 

To confirm the surface independence of (65) by direct calculation on an alternative surface 

we again choose a prismatic surface with a 2-sphere spatial boundary, but now of finite extent 

in time (i.e., finite ±𝑡1) but infinitely “wide”, i.e., the spatial spherical boundary has 𝜌 → ∞.  

On the cylinder boundary, as 𝜌 → ∞, the 𝑡𝑎𝑛ℎ−1 terms in the integrand of (65), i.e., (63), 

become zero and the remaining terms are all of order 1/𝜌4, and hence tend to zero when 

multiplied by the integration measure 𝜌2𝑑𝑡𝑑Ω.  

The scalar term in (63) is even in 𝑡 and hence cancels between the two end caps due to their 

opposite orientation. The remaining terms are odd in 𝑡 and hence contribute equally on the 

two ends caps.  

Carrying out the angular integrations shows that the two 𝑡𝑎𝑛ℎ−1 terms cancel, as follows. 

The factor multiplying the first of these terms after integrating over 𝑑Ω is, for the end cap at 

positive 𝑡, 

      −𝑖𝐼
4𝜋

2𝑟3      (77) 

For the second of the two 𝑡𝑎𝑛ℎ−1 terms, its factor after angular integration on the same end 

cap is, 

  ∫ ∫
3𝑖

2𝑟3

𝜋

𝜃=0

2𝜋

𝜑=0
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑(𝐼𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝐽𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝐾𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑             (78) 

The 𝜑-integral kills the 𝐽 and 𝐾 terms. The integral over 𝑠𝑖𝑛3𝜃 produces the factor 4/3 

whilst the 𝑐𝑜𝑠2𝜑-integral gives a factor of 𝜋. Hence (78) cancels with (77) and we are spared 

having to integrate over the awkward 𝑡𝑎𝑛ℎ−1 terms.  

What remains to be evaluated, after carrying out the angular integrations, is, 

2 ∫ 𝑟2𝑑𝑟
∞

0

(−𝑖𝐼
2𝜋𝑡

𝑟2(𝑟2 − 𝑡2)
+ 𝑖𝐼

2𝜋(5𝑟2 − 3𝑡2)𝑡

3𝑟2(𝑟2 − 𝑡2)2 ) = ∫ 𝑑𝑧
∞

0

(−𝑖𝐼
4𝜋

(𝑧2 − 1)
+ 𝑖𝐼

4𝜋(5𝑧2 − 3)

3(𝑧2 − 1)2 ) 

where the factor of 2 accounts for both end caps and 𝑧 = 𝑟/𝑡. As before we avoid the 

singularities in the integrand by suitable choice of contour in the Argand plane, so the desired 

integral becomes (noting that the integrand is even in 𝑧), 



1

2
∮ (−𝑖𝐼

4𝜋

(𝑧2 − 1)
+ 𝑖𝐼

4𝜋(5𝑧2 − 3)

3(𝑧2 − 1)2
) 𝑑𝑧

𝐶′

 

Here the whole of the real line is included in contour 𝐶′, except for skirting around the poles 

at 𝑧 = ±1, and the contour is closed in the upper half plane noting that the infinite semicircle 

contributes nothing. However, to be consistent we must now include the poles at 𝑧 = −1 and 

exclude those at 𝑧 = +1. This is because the previous integration was over integration 

variable 𝑧 = 𝑡/𝑟 whereas now the integration variable is 𝑧 = 𝑟/𝑡, and a small positive 

imaginary contribution to the former becomes a small negative imaginary part in the latter, 

and vice-versa. This reverses which pole is included in the contour.  

The residue of 
1

(𝑧2−1)
 at 𝑧 = −1 is −

1

2
. 

The residue of 
(5𝑧2−3)

(𝑧2−1)2 at 𝑧 = −1 is 
𝑑

𝑑𝑧
((𝑧 + 1)2 (5𝑧2−3)

(𝑧2−1)2
)|

𝑧=−1
= −2 

Hence, we get that (65) evaluates to, 

𝜉 =
1

2
× 2𝜋𝑖 [−4𝜋𝑖𝐼 × −

1

2
+

4𝜋

3
𝑖𝐼 × −2] =

2

3
𝜋2𝐼 

Thus confirming the previous result and hence the integral theorem (71) for biregular 

functions.  

Conclusion 

Novel integral theorems of Cauchy type have been presented for quaternion functions which 

are regular (or right-regular or their conjugates) in (48 – 53). These theorems appear to be 

distinct from Fueter’s Theorem, (32), Fueter (1935, 1936), in that they rely on different 

features in order to be integration surface independent and are not obviously inter-

convertible. 

Corresponding theorems have been shown to apply for biquaternion functions which are 

biregular (or right biregular or their conjugates) in (71, 72), but these integrals require careful 

specification of the integration contours in the Argand plane to include just one of the two 

poles. 

The equivalent of Fueter’s theorem also applies for biregular biquaternion functions, (74), 

providing the same caution is exercised regarding the integration contour deployed around 

the poles of the integrand.  

References 

[1] Fueter, R (1935): Die Funktionentheorie der Differentialgleichungen ∆u = 0 und ∆∆u = 

0 mit vier reellen Variablen. Comment. math. Helv. 7, 307-330 (1935).  

[2] Fueter, R (1936): Uber die analytische Darstellung der regularen  Funktionen einer 

Quaternionenvariablen. Comment. math. Helv. 8, 371-378 (1936) 

[3] Sudbery, A. (1979). Quaternionic analysis. Mathematical Proceedings of the Cambridge 

Philosophical Society , 85(2) , March 1979 , pp. 199 – 225. Published online by 

Cambridge University Press, 24 October 2008: 

doi: https://doi.org/10.1017/S0305004100055638 or see as5.dvi (archive.org). 

https://doi.org/10.1017/S0305004100055638
https://web.archive.org/web/20160805073852id_/http:/hypercomplex.xpsweb.com/articles/181/en/pdf/sudbery77quaternionic.pdf


[4] Schuler, B. (1937). Zur Theorie der regularen Funktionen einer Quaternionen-

Variablen. Comment. math. Helv. 10, 327-342 (1937).  

[5] Deavours, C.A. (1973) The Quaternion Calculus. The American Mathematical 

Monthly, 80(9), 995-1008, doi:10.1080/00029890.1973.11993432 

[6] Fokas, A.S. and Pinotsis, D.A. (2007). Quaternions, Evaluation of Integrals and 

Boundary Value Problems. Computational Methods and Function Theory, 7(2), 443-476 

(2007). https://doi.org/10.1007/BF03321657 

[7] Lambek, J. (2013). In Praise of Quaternions. CR Math. Rep. Acad. Sci. Canada, 2013, 

math.mcgill.ca.  

https://doi.org/10.1080/00029890.1973.11993432
https://doi.org/10.1007/BF03321657
https://www.math.mcgill.ca/barr/lambek/pdffiles/Quater2013.pdf

