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1. von Neumann Versus Shannon Entropy 
In classical statistical thermodynamics the entropy is defined as WlogkS , where k is 
Boltzmann s constant and W is the number of accessible microstates consistent with the 
known macrostate of the system. If all the microstates are equally probable, then each has 
probability p = 1/W. The Boltzmann entropy can then be written plogkS . 
Alternatively, if the different microstates have differing probabilities, say pi for the ith 

state, then the entropy would be iplogk with a probability of pi. So the ensemble 

average entropy would be i
i

iBoltzmann plogpkS . Dimensionless entropy is defined by 

dropping the Boltzmann constant factor. We shall assume dimensionless entropy from 
here on.  

In information theory, the Shannon entropy (or information) is defined in the same way. 
Let s say a message is transmitted using symbols xi, and that these are known to occur 
with probability pi. (This may be known, for example, because past messages have shown 
that x1 occurs with a relative frequency p1, etc.). How much information is there in a 
message N symbols long? Well, it is N times the average information per symbol 
transmitted, and the latter is defined as i2

i
iShannon plogpS . Note that whereas 

entropy in physics is defined using the natural logarithm, in information theory log2 is 
used. This is natural because it means that one evens binary choice corresponds to one 
unit of information (one bit). Some authors sometimes employ entropy defined using logs 
to the base of some other integer, for example the dimension of some relevant Hilbert 
space.    

By analogy, von Neumann defined the entropy of a mixed quantum state as,      

logTrS 2vN     (3.1.1)  

Consider first of all that the density matrix has been put in diagonal form with respect to 
an orthonormal basis, i . It can always be written ii

i
ip  and the von 

Neumann entropy is then,  
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So the von Neumann entropy is the same as the Shannon entropy in this case. This is not 
surprising since we can imagine the classical message symbols, {xi}, to be replaced by 
the quantum states i . Since the latter are orthogonal they can be distinguished with 

certainty, as can the classical symbols, and hence there is no physical difference between 
the two situations.   

It is important to realise that the von Neumann entropy is zero for any pure state. In the 
spectral representation of the density matrix, one pi will be 1 and the rest zero. Note that 
this is true even if the pure state in question is expressed as a superposition of some basis 
states, e.g. 21 . Of course this must be so: mathematically because we can 

always change basis so that 211 , and physically because there is no more 

information to be had beyond the specification of the Hilbert state vector.  

Note that the von Neumann entropy does not depend upon the basis chosen, because it 
depends only upon the eigenvalues of the density matrix. Thus changing basis so that 

UU leaves the von Neumann entropy unchanged (and recalling that bases are 
always related by a unitary transformation). By the same token, a quantum state changes 
in time by unitary evolution. Consequently unitary transformations of the form 

UU also represent temporal evolution, and hence the entropy is constant so long 
as unitary evolution applies. Quite how this is consistent with the classical concept of a 
relentless increase in entropy is discussed below.  

The difference between von Neumann and Shannon entropy arises when we consider a 

mixture of quantum states which are not orthogonal. Suppose now that ii
i

i

~~
p

 

where the states i

~
 are not orthogonal. These states are therefore not distinguishable 

with certainty. If we ignore this fact we would once again get the Shannon entropy, 

i2
i

iShannon plogpS . But in truth the amount of information conveyed by a sequence 

of i

~
 states must be rather less than this, because of the noise caused by the lack of 
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perfect distinguishability of the symbols . The von Neumann entropy properly accounts 
for this. An example makes this clear.   

Consider once again the mixture of two spin ½ particles which we introduced in Part 1 of 
these Notes, QM1. One particle is in the z-up spin state, and the other in the x-up state. 
From the classical (Shannon) point of view, we have a mixture with p1 = p2 = 0.5, giving 
an entropy of 125.0log5.0 2 . The density matrix in the z-representation is,  

25.025.0

25.075.0
   

2

1

2

1
5.05.0

  

To find the von Neumann entropy we need to diagonalise the density matrix, i.e. to find 

its eigenvalues. This is done by solving the secular equation 0
25.025.0

25.075.0
. 

This yields  = 0.1464 or 0.8536. The von Neumann entropy is thus,

    

6007.08536.0log8536.01464.0log1464.0S 22vN

  

So, only ~0.6 of a bit of information would be conveyed per quantum symbol 
transmitted in this example, compared with 1 bit per symbol in the classical Shannon 
case. Quite generally we find,       

ShannonvN SS

     

(3.1.2)  

The equality holds only when the mixture is considered to consist of orthogonal quantum 
states. This, of course, is possible for any mixture. The von Neumann entropy does not 
depend upon the basis chosen. The Shannon entropy does. For a quantum mixture the 
Shannon entropy is just wrong.  

Is the von Neumann entropy right ?  Certainly it is preferable to the Shannon entropy, 
which is basis dependent and incorrect on physical grounds. But the formula 

logTrS 2vN  does have a degree of arbitrariness and some authors have proposed 

alternative definitions. However, I have seen claims (but not a proof) that the sub-
additivity inequality (discussed below) is sufficient to imply the von Neumann formula. 
The sub-additivity inequality holds that, for a bipartite system, the entropy does not 
exceed the sum of the entropies of its parts: BAAB SSS . This inequality, together with 
the condition that the equality hold only for uncorrelated sub-systems ( BAAB ), is 
claimed to yield the von Neumann formula. The inequality BAAB SSS seems to be 
physically motivated, so this is a strong argument in favour of the von Neumann entropy.  



Rick s Formulation of Quantum Mechanics QM6: Entropy and Its Inequalities 

2. The von Neumann Entropy Inequalities 
We have seen one already, Equ.(3.1.2). There are several more

  
2.1 Maximum Entropy Possible is NlogSS 2

MAX
vNvN where N is the 

number of non-zero eigenvalues of the density matrix. The maximum entropy is realised 
when there is an equal probability (1/N) for all the orthogonal eigenstates, i.e. maximum 
randomness. Within a given Hilbert space, the maximum is greatest when all states 
contribute, i.e. when N is the dimension of the Hilbert space.  

2.2 Entropy Change on Mixing - Concavity 
Suppose we have several separate mixtures over the same Hilbert space, etc.,, .21 , 

where, i
i

ii11 p , i
i

ii22 p , etc. Then we can make a new mixture by 

combining these mixtures in the ratios (probabilities) q1, q2, etc., where 1q
j

j . The 

new mixture of mixtures is clearly,     

iiji
j,i

jj
j

jT pqq

   

(3.2.2.1)  

The von Neumann entropy of the mixture of mixtures will generally be greater than the 
average of the entropies of the constituent mixtures, i.e.,     

j
jvNjj

j
jvNTvN SqqSS  (3.2.2.2)  

This is referred to as concavity . (To be honest I m confused as to why it isn t called 
convexity ).     

Do not confuse a mixture, in this sense, with physically mixing two or more systems. The 
latter really means adding systems together. In contrast, in a statistical mixture we still 
have just one system, but we don t know for sure which one it is. Thus, physically mixing 
systems is an AND operation, whereas a quantum mixture is an OR operation.   

(3.2.2.2) corresponds to the notion that information is lost on mixing. Physically this is 
because we have more information when we know all the quantities jj ,q  than when 

we know only T . Knowing only T  we cannot re-create the original jj ,q  because 

there are obviously many ways the total T  can be decomposed into sub-mixtures. Thus, 
information has been lost and the entropy increases. In other words, the less we know 
about how the final mixture was prepared, the greater the entropy. The equality is 
achieved iff all the sub-mixture density matrices are the same.   
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Example: Consider just two sub-mixtures with density matrices,     

25.00

075.0 
and 

875.00

0125.0  

The vN entropies of these are respectively 25.0log25.075.0log75.0 22 = 0.8113 and 

875.0log875.0125.0log125.0 22 = 0.5436. Suppose these are combined 50%/50%, 
then the average entropy before mixing is 0.5 (0.8113 + 0.5436) = 0.6774.   

The mixture of mixtures has density matrix 
875.025.05.00

0125.075.05.0
 and 

this has vN entropy 5625.0log5625.04375.0log4375.0 22 = 0.9887. Hence, the 
mixture of mixtures has a larger entropy than the original average entropy (0.9887 > 
0.6774).  

The general proof of (3.2.2.2) is given in Appendix 1.  

2.3 Combined States - Subadditivity 
The notion of combined states should not be confused with mixing sub-mixtures. Pure 
quantum states might be composed of two parts. For example, we may be considering 
deuterons, and each of the pure quantum states of a given deuteron might be considered 
as a combined state of a proton and a neutron. The simplest Hilbert space of combined 
states is the direct product of the constituent spaces: H = HA HB. In this case the A and 
B states are uncorrelated, i.e., given a state of the A component there is no preference for 
any particular B state. In this case the von Neumann entropy displays its extensive 
nature, i.e., the total entropy is just the sum of the entropies of the component sub-states,  

For H = HA HB:   B
vN

A
vN

AB
vN SSS

   

(3.2.3.1)  

This is obvious because the probability of the combined state i of A and j of B is clearly 
just B

j
A
i pp , and hence,  

B
vN

A
vN

j

B
j2

B
j

i

A
i2

A
i

j,i

B
j2

B
j

A
i

j,i

A
i2

B
j

A
i

j,i

B
j2

A
i2

B
j

A
i

j,i

B
j

A
i2

B
j

A
i

AB
vN

SSplogpplogp       

plogppplogpp       

plogplogpppplogppS

 

(3.2.3.2)  

But what happens if we confine the combined state Hilbert space to some sub-set of the 
product space, i.e., H 

 

HA HB. For example, a deuteron must be a spin 1 combination 
of a proton and a neutron, since the singlet spin state is not bound by the strong nuclear 
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force. This means there are now correlations between the components states. In our 
deuteron example the spin states of the proton and neutron are correlated. There are 
therefore fewer states available to the combined system than were available in the 
product space HA HB. In view of (3.2.3.1) we therefore expect,  

For H 

 

HA HB:   B
vN

A
vN

AB
vN SSS

   

(3.2.3.3)  

with equality holding only when H = HA HB. Physically, the correlations present within 
H create a degree of order, and hence reduce the entropy. Inequality (3.2.3.3) is known as 
subadditivity . Equality holds iff H = HA HB with no correlations between the two 

parts.  

2.4 Combined States - The Triangle Inequality & Entanglement 
(3.2.3.3) gives the upper bound vN entropy for a combined (bipartite) system. Is there a 
lower bound? For a classical system, the maximum correlation between components A 
and B would be if, given any state of A then the state of B was fully determined, or vice-
versa. Although we have not argued this rigorously, it is reasonable that this leads to a 
minimum entropy equal to the greater of that of system A and B. Hence, the classical 
(Shannon) entropy obeys B

Shannon
A
Shannon

AB
Shannon S,SMAXS . This corresponds to the very 

reasonable notion that, for a classical system, the combined system contains at least as 
much information as any of its components.  

In quantum theory, the von Neumann equivalent is the Araki-Lieb inequality,      

B
vN

A
vN

AB
vN SSS

    

(3.2.4.1)  

This is difficult to prove, and was first proved only in 1970  see Araki & Lieb (1970). 
(3.2.4.1) together with the sub-additivity inequality yield the triangle inequality,     

B
vN

A
vN

AB
vN

B
vN

A
vN SSSSS

    

(3.2.4.2)  

The name derives from the fact that if the entropies of the individual sub-systems are 
regarded as the lengths of two sides of a triangle, the entropy of the combined system is 
restricted to the possible lengths of the third side.   

The Araki-Lieb lower bound entropy is remarkable and displays essentially quantum 
features. In contrast to the classical case, achieving the Araki-Lieb lower bound entropy 
implies that the combined system will have less entropy (i.e. less information) than either 
of its components. Classically this is incomprehensible. In quantum mechanics it comes 
about due to entanglement. Entanglement will be discussed in more detail in Part 7 of 

theses Notes, QM7. For now, consider the entangled state 2/
BABA

. 

Considered as a combined system it is a pure quantum state and hence has zero entropy. 
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But considered as separate sub-systems, each particle can be in one of two states. So the 
entropy of each sub-system (particle) is 1. The Araki-Lieb inequality is respected because 

110 . But notice that each sub-system has greater entropy (1) than the combined 

system (of zero entropy). There is more information in each of the parts than in the 
whole. This non-classical behaviour of quantum information is responsible for the 
quantum weirdness of entangled states, such as the EPR paradox.    

2.5 Combined States 

 

Strong Subadditivity 
In 1973 Lieb and Ruskai proved a stronger inequality, which contains the ordinary 
subadditivity property as a special case,      

BC
vN

AB
vN

B
vN

ABC
vN SSSS

   

(3.2.4.1a)  

This may also be written,      

Y
vN

X
vN

YX
vN

YX
vN SSSS

   

(3.2.4.1b)  

Again it is a major mathematical endeavour to prove this, though simplified derivations 
have now been presented, e.g. Nielsen & Petz (2005).    

2.6 The Entropy of Measurement & Maxwell s Demon 
With the exception of those curious processes called measurements , which involve the 
mysterious -process, all other physical evolution is unitary according to quantum 
mechanics. But unitary evolution leaves the von Neumann entropy unchanged (as shown 
in Section 3.2.5.3). So all entropy increases would seem to be due to measurements , i.e. 
the -process.   

Suppose we have a mixed system with density matrix ii
i

ip  wrt some 

orthonormal basis i . Let us carry out a measurement of an observable Q on this 

mixed system. Any given i  will give rise to the measurement outcome qj with a 

probability, according to the Born Rule, of jiij

2

ij qC  where,,C . But each state i

 

occurs in the original mixture with relative frequency pi, so that the overall probability of 
the measurement outcome qj is,   

i

2

ijij Cpp~    (3.2.5.1)  
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So the density matrix after measurement will be jj
j

j qqp~~ . This may also be 

written j
j

j PP~  where jjj qqP  , i.e., the jP are the projection operators for the 

measurement, since,    

j
j

jjji
*

j,i
j

jj
i

iiij
j

jj
j

j

qqp~qpCijCijq   

qqpqqPP~

  

(3.2.5.2)  

Of course, this density matrix applies only so long as we have not looked to see what 
measurement outcome has actually been realised. If we did that we would necessarily 
find just one of the states, iq , to which we would then assign an entropy of zero.   

The density matrix (3.2.5.2) does, however, account for the reduction of the 
wavepacket ; the irreversible, indeterminate, -process. So whatever physical 
interactions are involved when the apparatus measures the system, they have all 
happened prior to the density matrix becoming (3.2.5.2). This includes both any unitary 
evolution and the non-unitary -process, and hence the decoherence implicit in the -
process. Indeed, it is only because of the non-unitary, irreversible, -process that the 
measurement can result in an increase in entropy. And the measurement does increase the 
entropy. We have, as a mathematical consequence of (3.2.5.1,2),     

logTrS~log~Tr~S 2vN2vN  (3.2.5.3)  

i.e., the von Neumann entropy after measurement is greater than, or equal to, the entropy 
before measurement. The general proof of this is given in Appendix 2.   

Example: Consider a 2D density matrix in diagonal form wrt an orthonormal basis and 
with diagonal components p and 1-p before measurement. The matrix in (3.2.5.1) which 
transforms the probabilities before measurement to those after measurement consists of 
real, positive numbers such that every row and every column add to unity. Hence the 

most general form of this matrix in 2D is 
cc1

c1c
, where 0  c  1. Hence, the 

probabilities after measurement are pccp21p~1 and cp2pcp~1p~ 12 . 

Hence, the vN entropy before measurement is )p1(log)p1(plogp 22  and the vN 

entropy after is cp2pclogcp2pcpccp21logpccp21 22 . 
The following graph plots the ratio of the entropy before to that after measurement 
against p for a number of different values of c. It is readily seen that the entropy after 
measurement is always greater except when equality holds at p = 0.5. 
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Ratio of Entropy Before to After Measurement Versus p
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What about entropy of measurement on a pure state?

 

We have noted that measurement produces a pure state outcome  so long as we look 

 

and that this has zero entropy. But the entropy of measurement for a mixed state, as given 
by (3.2.5.1,2,3), requires that we don t look! If we do look, then even for an initially 
mixed state we will find a pure state and hence zero entropy. So we haven t compared 
like with like.  

What if we perform our measurement of Q on an initial pure state which is not an 
eigenstate of Q? Consider the state

i
i

*
i1

i
i1i1 qCqq . Before measurement 

the density matrix is j
j,i

ij1
*
i111 qqCC . Note that in the orthonormal basis 

provided by iq  this density matrix has non-zero off-diagonal components. These 

establish the correlations that mean that diagonalisation [which, of course, is 
accomplished in basis i ] results in a pure state, i.e. all but one of the diagonal 

elements are zero.  

If we now perform the measurement but do not look at the outcome, we will have a 

mixed state  because we will know that each state iq  has a probability of 
2

i1C  of 

being revealed when we do look. So the density matrix after measurement on a pure state, 
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but before looking at the outcome, is 
2

i12

2

i
i1 ClogC . So measurement creates 

entropy even when the initial state is pure, so long as we haven t looked at the outcome.  

I have not seen this stated in any texts, but I suspect that the entropy of measurement on a 
mixed state will always exceed that on a pure state. That is,  

k

2

kjk
j

2
i

2

iji
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after

2

i12

2

i
i1

pure
after CplogCpSClogCS           (3.2.5.4)  

This may be demonstrated quite easily for the 2D case. The most general form of the 

matrix of elements 
2

ijC is 
cc1

c1c 
where 0  c  1. The entropy of the pure state 

after measurement is thus )c1(log)c1(clogcS 22
pure
after . The entropy of the 

mixture after measurement has already been derived in the previous example and is, 
cp2pclogcp2pcpccp21logpccp21S 22

mixture
after . The 

above graph plots the ratio of )p1(log)p1(plogp 22  to mixture
afterS against p. But 

mixture
afterS is symmetrical under exchange of p and c. So the graph of the ratio of 

)c1(log)c1(clogc 22

 

to mixture
afterS  against c will look identical. Hence 

mixture
after

pure
after S/S is always less than unity except for c = 0.5, when the two entropies are 

equal.    

The general proof of (3.2.5.4) is given in Appendix 3.  

3. But Isn t Measurement Supposed to Provide Information? 
There is a paradox involved in the notion that measurement increases entropy. 
Measurement is intended to provide us with information about the system. But entropy is 
a measure of our ignorance about the system. Greater system entropy means that the 
system could be in a greater number of states as far as we know, roughly speaking. But 
inequality (3.2.5.3) says that measurement has increased the system entropy, and hence 
decreased our knowledge about the system! That s a pretty useless measurement if it 
decreases our knowledge of the system. And yet this applies to all measurements.   

The resolution of the paradox is that (3.2.5.3) only applies before we have actually 
looked at the result of the measurement. At this stage we have not yet taken benefit from 
the knowledge gained from the measurement. The increase in entropy in (3.2.5.3) is 
solely that due to the physical interaction between the system (mixture) and the 
measurement apparatus. If we were considering a classical process, in which 
measurements could always be accomplished in principle without disturbing the system, 
then, so long as we were skilled experimentalists, we could always arrange for the 
equality in (3.2.5.3) to hold. For classical systems the physical process of measurement 
need not affect the entropy.  
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After the physical process of measurement has happened, i.e. after the interaction 
between apparatus and system/mixture is complete, the system/mixture can be regarded 
as having essentially the same status whether classical or quantum physics is considered. 
In either case we have a classical (incoherent) mixture of perfectly distinguishable 
alternatives. Any given physical realisation of the system is now in a definite state, even 
though we do not yet know what that state is because we have not looked. This applies 
also to the quantum system, because the measurement has been made and the wavepacket 
has already collapsed1. Consequently, what happens to the entropy when we now look at 
what result we got is exactly the same for the classical and quantum cases. It is at this 
point that the entropy suddenly nose-dives to zero. Of course it must, because now a 
single outcome is apparent 

 

there is no longer any uncertainty.   

So, ultimately, measurement does reduce entropy (to zero). But this is a completely 
separate part of the overall measurement process to that considered in Section 2.6. The 
situation is summarised as,  

1) Physical interaction with apparatus, no peeking! - Quantum entropy increases (except 
for a pure state of the measurement operator).  

2) Physical interaction with apparatus, no peeking! - Classical entropy can always be 
contrived to remain unchanged with sufficient experimental care.  

3) Look at measurement outcome: Either classical or quantum: Entropy decreases to zero.  

The irreversible, indeterminate -process, which applies only in quantum mechanics, is 
responsible for the entropy increase in (1) which does not apply in (2). If quantum 
measurement were accomplished via a purely unitary interaction with the apparatus, then 
quantum measurement would lead to no entropy increase either. The actual entropy 
decrease which applies eventually, at step (3), is no different for classical or quantum 
systems/mixtures. It is solely at step (3) that the entropy deceases and information about 
the system is gained.   

So this is one paradox resolved. Unfortunately, it merely raises another. According to the 
much revered Second Law of Thermodynamics, the entropy of a closed system cannot 
decrease. How, then, is step (3) possible?   

4. How is Measurement Possible? 
It is important to realise that step (3) is the same for classical and quantum measurements. 
Hence this paradox of measurement was always present in classical physics too. In fact, it 
turns out that it is essentially the same paradox as Maxwell s Sorting Demon.   

                                                

 

1 This perspective on things holds that the collapse of the wavepacket is the result of a real physical 
interaction with the apparatus and does not require the involvement of our consciousness.  
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Maxwell s demon is envisaged as sitting by a trapdoor in a panel which divides a gas into 
two compartments. The gas is initially in thermal equilibrium, the two compartments 
containing gas at the same pressure, temperature and density. The demon is supposed to 
spot the speeds of oncoming molecules and open the trapdoor to let fast molecules pass 
from left to right, but not slow ones. Similarly, the demon lets only slow molecules pass 
from right to left. In this way the demon engineers a temperature and pressure difference 
to arise between the gas in the two compartments.   

It might be supposed that this apparent violation of the Second Law is rationalised by the 
demon s requirement to expend work in making these measurements of speed and in 
operating the trapdoor. However, it turns out that these operations can, in principle, be 
carried out with arbitrarily small expenditure of work and hence arbitrarily small entropy 
increase. It turns out that the resolution of the paradox is identical to that of our classical 
measurement paradox. The current received wisdom is that both problems come down to 
the entropy of record erasure [see Leff and Rex (1990), Feynman (1996), Lubkin (1987) 
or Szilard (1929), for example].   

The Accepted Answer relates to how we, as observers, or the Maxwell demon, who is 
also an observer, records  and subsequently re-records  information. In both cases it is 
necessary that we have some sort of register which records the result of the observation. 
This may be simply a computer style register which contains a number. The resolution of 
the paradox comes by considering a continuing cycle of observations. On each new 
observation it is necessary to over-write the result of the previous observation which is 
currently stored in the register. This is an irreversible process. Once the previous record is 
over-written, that information is lost (i.e. entropy is produced). Since the register must 
have at least as many possible states as the number of states of the system being 
measured, it follows that the amount of information lost by over-writing must at least 
balance the entropy reduction in step (3).   

Closer analysis reveals that it is actually the erasure of the previous record which 
accounts for the entropy production (i.e. information loss). The process of over-writing 
consists first of erasure to produce some standard blank condition for the register, 
followed by a writing operation starting from this standard blank condition. The latter 
step can be a unitary (reversible) process, whereas the erasure cannot be. So the erasure is 
responsible for the entropy production and keeping the entropy book-keeping of the 
universe in accord with the Second Law.   

If the information-theoretic explanation leaves you wondering what is happening to the 
physical entropy, bear in mind that there must be a physical mechanism which causes the 
erasure. Szilard (1929) considered a model in which erasure was implemented by 
dunking the register in a heat bath. The production of entropy is then readily apparent.  

A possible objection to this explanation is that, on the first observation, no erasure has yet 
been necessary. But we still loose information from the register when we write to it, 
unless we have been assured that it is pre-prepared in the blank state. For that matter, 
we can envisage being supplied with a continual stream of new registers which have been 
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pre-prepared in the blank state (a blank tape), thus perpetuating the objection across all 
cycles. The objection to this is that the system is no longer closed. We are being provided 
with a crucial resource from outside : an arbitrarily long blank tape. This blank tape is 
in a highly ordered state and hence may be regarded as providing negative entropy , or 
functioning as a garbage can  (Lubkin, 1987).   

Thus, a Maxwell Sorting Demon could in principle be built which would cause a gas to 
be divided into two parts out of equilibrium. But, to function, the demon would require to 
be supplied with the equivalent of blank tape or a means of erasing its register. Either 
way the total entropy, including the source of blank tape and/or the erasing device, would 
not decrease. That is the current received wisdom.  

5. Difficulties 
Personally, I still find the situation unsatisfactory. The root cause of this may be the 
observation (I think first made by Dirac) that the -process is actually the only source of 
entropy increase in the universe. According to quantum theory, all other physical change 
comes about by unitary evolution. But unitary evolution leaves entropy unchanged 
because the states evolve according to U  and hence the density matrix 

evolves according to,  

UUUUppp ii
i

iii
i

iii
i

i  

and hence,  

vNi2
i

i22vN SplogpUUlogUUTrlogTrS    (3.2.5.3.1)  

(where we have used the fact that the eigenvalues of a matrix are unchanged by a unitary 
similarity transformation).   

Another expression of my difficulty is that when entropy is expressed in terms of 
information, it is our lack of knowledge about the particular microstate of the system 
which causes the system to possess information . The role of our knowledge in this 
view renders entropy horribly subjective. This is revealed in step (3) in the following 
way: suppose a second observer has already peeked at the measuring device before we 
do. He will now regard the system as having zero entropy, whereas we will not. This 
subjective interpretation is not at all satisfactory, in my view, because entropy would 
appear to be a physical property of the system. The maximisation of entropy as a system 
moves towards thermal equilibrium, from an initial state which is out of equilibrium, is 
not subjective. The entropy is about how many states the system has available to it, and 
which it can occupy (and perhaps does, transiently). Our state of knowledge does not 
come into it.   



Rick s Formulation of Quantum Mechanics QM6: Entropy and Its Inequalities 

The objections of both the preceding two paragraphs suggest that step (3) does not 
involve any entropy change. How can it when the -process, the only physical source of 
entropy increase, has already happened? Step (3) itself does not involve any -process 

 
unless you assume, like Wigner, that the -process does not take place until we perceive 
the outcome of the measurement, i.e. that our consciousness is crucial to the -process. I 
am strongly disinclined to believe this. In any case that view seems contradictory. We 
need only place a human (Wigner s friend) inside the measurement apparatus. That will 
implement the -process for us. But we still do not know the measurement outcome yet, 
because this is merely a statement about our knowledge, and has nothing to do with 
quantum mechanical niceties.   

If the -process is a physical process, albeit non-unitary and currently rather mysterious, 
then the state of the system post-measurement is already determined, and the fact that we 
do not know what it is makes no difference to the system. Instead, the entropy changes 
have already occurred in step (1) or (2). This must be so, since the -process takes place 
in step (1), and this alone can change entropy.   

But in that case, how does entropy arise in classical physics, which has no -process? 
Perhaps, in a careful analysis, entropy in classical physics cannot consistently be 
interpreted in terms of information.    

< Appendices 1, 2 and 3 to be added > 
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