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Even in classical physics it is possible that the state of a system be unknown, or only 
partly known, simply because of our ignorance. Thus, in classical thermodynamics, 
knowledge of the temperature, pressure and density of a gas does not determine the 
specific state of all the constituent molecules. In classical physics this information would 
be regarded as knowable in principle, but just not known in practice. For a molecule 
chosen at random, there will be a certain probability that it possess a kinetic energy in the 
range, say, E to E + dE. Thus, the gas is a mixture of molecules of various energies, 
moving in various directions, and these quantities can be assigned probability densities. It 
is possible for this type of deterministic mixture to occur also in quantum mechanics. 
In which case the deterministic probabilities must be codified in the formalism as well 
as the quantum mechanical probabilities which arise from the Born Rule. How is this 
done?  

It cannot be done simply by adding two quantum states together. This can be 
demonstrated with a simple example. Consider two spin ½ particles. One is prepared in 
the spin up state wrt the z-axis, and the other in the spin up state wrt the x-axis. Let 
us prepare a great many (N) of these two-particle mixtures, and let us measure the spin of 
just one of the pair of particles chosen at random from each of the N mixtures. Suppose 
we choose to measure the spin in the z-direction. It is clear what the distribution of our 
measurements will be. About half the particles chosen will be in the z-spin-up state, and 
these will all give the result +1 (measuring in units of 2/ ). The other half will be in the 
x-spin-up state. These particles will give a z-spin-up value of +1 half the time, and -1 the 
other half. So, overall, we must observe a z-spin of +1 on 75% of the occasions and hence 
a z-spin of -1 on 25% of the occasions.  

But see what happens if we naïvely assumed that the two particle mixture could be 
described by adding their wavefunctions. If 

 

and  represent spin up & down wrt the z 

axis, then the x-spin-up state is 2/  . Simply adding the states with the same 

weighting would give,     

2
A    (1.4.1)  

where A is required to normalise, and hence takes the value 
22

1
A . Hence (1.4.1) 

becomes, 38268.092388.0 . This state would produce measurements with z-

spin-up 85.36% of the time, and z-spin-down 14.64% of the time. This is the wrong 
result, and hence the mixture of the two particles cannot be represented by simply adding 
the Hilbert space states as in (1.4.1).   
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A more fundamental physical objection to (1.4.1) is that it represents a pure quantum 
state. But a pure quantum state cannot be made by throwing two particles together willy-
nilly. Equ.(1.4.1) is a coherent quantum superposition, whereas in a classical mixture the 
two particles are incoherent. This is the crucial distinction.  

So how can a mixture be codified correctly in quantum mechanics? The answer is in 
terms of the density matrix. Recall that a pure quantum state, , has a density matrix 

 (see Part 1 of these QM notes, QM1). So, for a pure state, specifying the density 

matrix is equivalent to specifying the state, . However, if we now have a classical (i.e. 

an incoherent) mixture in which state 1 occurs with probability p1, state 2 occurs 

with probability p2, etc., the density matrix of the mixture is defined by,      
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(1.4.2)  

where pi are probabilities, and hence are vreal numbers in the range [0, 1] such that 
n

1i
i 1p , where n is the (arbitrary) number of terms in the mixture, (1.4.2).  

Thus, the density matrix is still an operator in Hilbert space, and hence is a well defined 
quantity in our formalism.   

The reason why the density matrix is the correct vehicle for formulating a quantum 
mixture is that it represents probabilities, as contrasted with the state vector which 
represents probability amplitudes.   

Note that there is no requirement for the states entering the sum in (1.4.2) to be 
orthogonal. In our example above the first state is a z-spin state whereas the second is an 
x-spin state, and these are not orthogonal. The density matrix for this example is thus,    

25.025.0

25.075.0
   

25.025.025.00.75   
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5.05.0

  

(1.4.3)     

where the final matrix expression is in the obvious (z) representation.   

When the components of the density matrix are expressed wrt an orthonormal basis, its 
diagonal elements are the probabilities of the corresponding measurement outcomes. So 
the 75% / 25% up/down result is reproduced correctly in this formalism.  



Rick s Formulation of Quantum Mechanics QM2: Mixtures and the Density Matrix 

The expectation value is the sum of the product of these probabilities with the 
measurement eigenvalues. This can be written in exactly the same way as we saw for a 
pure state in QM1, i.e. as a trace over the product of the density matrix and the operator 
representing the observable,      

QTrQ

      

(1.4.4)  

In this case we have, 5.0
25.25.0
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Tr
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An important property of the density matrix is that 1pTr
i

i . This follows directly 

from (1.4.2). Consider an orthonormal basis j . Then    
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(1.4.5)  

where Ns is the number of states and n is the (arbitrary) number of terms in the sum 

defining the density matrix in (1.4.1). We have used the fact that Ij

N

1j
j

s

, and the 

states i must be normalised, though not necessarily orthogonal.   

If  is simply the pure state  then it is clear that 2  and hence 2Tr  = 1. In 

fact this is only true if  is a pure state. Otherwise we have 1Tr 2 . This follows in a 
similar manner to (1.4.5), i.e.,            

(1.4.6) 

1pppp

ppppTr

n

1k,i

2

kikikii

n

1k,i
kki

kiijjkk

N

1j

n

1l,i
ijkkiij

N

1j
k

n

1k,i
i

2
ss

   

where the strict inequality holds provided that  is not a pure state. The last step follows 

because each of the 
2

ki is in the range [0, 1], and hence 1p
n

1k

2

kik  and 
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therefore 1ppp
n

1i
i

n

1k,i
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kiki . Note again that this holds even though the states 

i  may not be orthogonal (though they must be normalised).   

In the particular case that the i

 

are orthogonal, then (1.4.6) gives 1pTr
n
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2
i

2 , 

but this is not true in general.  

The fact that 2Tr  = 1 only for a pure state provides a convenient test of a pure state. It 
will generally be simpler than diagonalising the density matrix to show explicitly that it 
has just one non-zero term.  

It follows from (1.4.2) that the density matrix is Hermetian, , and hence that it has 
real eigenvalues are orthogonal eigenvectors. The latter provide a unitary transformation 

which diagonalise the density matrix. That is, if we change to the basis j  which 

consists of the eigenvectors of  then it becomes,   
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(1.4.7)  

A key distinction between (1.4.2) and (1.4.7) is that the latter involves a sum over the 
number of possible states, Ns, i.e. the dimension of the Hilbert space, as opposed to 
(1.4.2) which is a sum over an arbitrary number of terms in the mixture. The diagonal 
components, i , are, of course, the eigenvalues of the density matrix. Because we know 

that 1Tr  it follows that the eigenvalues sum to unity.   

The density matrix is only diagonal in this specific representation. Transforming to an 

alternative orthonormal basis it will become a full matrix, i.e., putting jiji U

 

gives,    
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(1.4.8)  

Thus, for example, even if we were dealing with a pure state, the density matrix would 
appear to be a full matrix when expressed in a general basis. The test 2Tr  = 1 is then 
the most efficient means of determining whether the state is actually pure. If not, the 
diagonal form can only be obtained from the general form by solving the eigenvalue 
problem.    
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