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Given a finite amount of mass-energy, what is the maximum amount of information that 
can be represented by it? What is the greatest number of elementary computational steps 
that can be carried out? These questions are answered below. It turns out that the answers 
depend upon either how much time you have available or upon how much space you 
have available.  

(A) Maximum Number of Computations  

An elementary computation is a single logic gate such as AND, NOT, OR or XOR, etc. 
One means of ensuring that the number of elementary computations is uniquely defined 
is to reduce a computation to a sequence of Toffoli (or Fredkin) gates. Any computation 
can be carried out using only these gates, and hence must have a unique minimum. 
Consider the following statements,  

 

In principle, a computation can be carried out with no expenditure of energy.  

 

The rate at which computations can be carried out is limited by the available energy.  

(Throughout, both mass and energy can be read interchangeably as mass-energy ).  

Both are true. That they are not contradictory is due to the second statement referring to 
the computational rate, and the first referring to the expenditure of energy. The latter is 
distinct from energy being involved in a conservative manner. It is trivially obvious that a 
computation cannot be performed unless some energy is available. This is because a 
computation is a physical process. Any physical process must involve some stuff upon 
which the process is being carried out. According to the physical view of the world, this 
stuff equates to mass-energy.   

The first statement means that computation can be carried out, in principle, in a manner 
which does not dissipate any of the energy involved. That this is true derives from the 
observation that computation can be carried out in a reversible manner (Bennett, 1979 & 
1982). Indeed, the meaning of reversible in thermodynamics is without energy 
dissipation . The content of Bennett s argument is essentially that logical reversibility 
implies the existence of a process which is also thermodynamically reversible.   

This suggests that it should be possible, in principle, to solve the quantum-
chromodynamic equations for the mass spectrum of the hadrons using just a handful of 
electrons and a few eV of energy. (Construction of a working device is left as an exercise 
for the reader). The snag is that, as well as being stupendously ingenious, you would have 
to wait a very long time for the answer. This is where the second statement comes in.  

It is rather obvious that we will be able to compute faster with more mass-energy 
available  simply because we will now have enough material at our disposal to make a 



proper computer! However, for a given mass of material, how fast can we compute? The 
answer lies in recognising that the fundamental nature of a computation is to change 0 
into 1 or vice-versa. Our computer must manifest these binary states physically. Thus, to 
compute quickly, we need to be able to change the binary physical states of the system as 
fast as possible. Clearly, this will be facilitated by making the physical states which 
represent 0 and 1 very similar  so there is less changing to be done. But there is a limit 
to how similar two physical states can be whilst remaining distinguishable. This is the 
quantum limit. To be distinguishable, the states must be orthogonal quantum states. Our 
problem therefore becomes, how quickly can a quantum state be changed into an 
orthogonal quantum state? The answer is provided by the uncertainty principle,       

E2/t

     

(1a)  

This defines the minimum time required to change from a state whose uncertainty in 
energy is E to an orthogonal state. [NB: A state with precisely defined energy, E, can 
never undergo change, since its time dependence is just a phase factor /iEte  with no 
overlap to any other state].   

The uncertainty in the energy of the state cannot exceed the expectation value of its 
energy, E, since energy cannot be negative. Consequently, we can reduce the 
computation time given by (1a) to a minimum by taking EE , and thus,       

E2/t Min

    

(1b)  

These arguments follow Lloyd, 2000 and 2002. Since (1b) is the minimum time for an 
elementary computation, the maximum computation rate is,     

Maximum Computation Rate = 
E2    

(1c)  

By summation over its parts, the same relation must also hold for the maximum 
computation rate of a macroscopic system in terms of its total energy.  

Minimum Power Requirement for an Irreversible (Dissipative) Computer 
The power requirement for a reversible computer of any given speed is zero. However, 
we assume instead that our computer is irreversible but dissipates energy at the minimum 
rate consistent with its speed. Equ.(1c) says that the minimum energy that must be 
available if the computer is to calculate at a speed C bits per second is 2/CE . We 
are assuming that this amount of energy, i.e. the minimum required to support the stated 
computing speed, is dissipated at each computational step. But each such step takes a 
period of time  = 1/C. Hence, the power requirement is P = E/ = 2/C2/C 2 . 
Hence, the power requirement of such a computer is proportional to the computing speed 
squared. Unless we have taken special precautions to build a reversible computer, in 
practice this is likely to be the minimum power requirement of a dissipative computer.   



The demand is modest. A modern home computer runs at a few GHz, which may be 
crudely interpreted as the computing speed. Hence, C2 is ~ 1019 per second2. Since 
Planck s constant is of order 10-34 Js, the minimum power requirement is ~10-15 W. I 
guess the power of a standard CPU chip is in the order of tens of W, so there is room for 
improvement by some 16 orders of magnitude before the ultimate quantum limit is 
reached. Of course, that could be improved further, and without limit, by going 
reversible.  

Computational Capacity of the Universe 
Using (1c) it is simple to calculate the maximum number of computations that can have 
been carried out within the observable universe since the Big Bang. The age of the 
universe is 13.7 Byrs = 4.3 x 1017 s. Including dark matter and dark energy as well as 
ordinary (baryonic) matter, the mean density of the universe is within ~1% of flatness 

(Spergel 2006). So the mean density is the critical density, 
2Gt8

3
= 9.6 x 10-27 kg/m3 = 

5.7 H atoms/m3. Multiplying by c2 gives an energy density of 8.6 x 10-10 J/m3. Hence, the 
upper limit to the physically possible computational rate per unit volume, using (1c), is 
5.2 x 1024s-1m-3.  A pretty impressive figure for just 5.7 hydrogen atoms!   

To find the total number of computations over the whole observable universe requires the 

(observable) universe s volume. This is 3R
3

4
V  where R ~ 3.5ct ~ 4.5 x 1026 m, hence 

V = 4 x 1080 m3. So, the rate of computation by the whole observable universe is 2 x 10105 

s-1.    

[NB: The reason why the radius of the universe is ~3.5ct rather than just ct involves two 
different subtleties. A star on the horizon has been moving at speed c away from here for 
a time t, accounting for a distance ct. During that period, space has also been expanding. 
In a flat space with no dark energy this would account for another 2ct, bringing the total 
to (exactly) 3ct. However, dark energy appears to be causing an acceleration in the 
universe s rate of expansion. Based on observational evidence (Spergel 2006), the 
amount of dark energy can be shown to give rise to a further expansion of space of about 
~0.5ct, bringing the total to ~3.5ct.]  

Multiplying the current computational rate of the universe by the age of the universe 
yields an upper bound for the total number of computations that can have been carried 
out over the life of the universe, i.e. ~0.8 x 10123.   

This is an upper bound for the number of computations that can have been carried out by 
the mass-energy which is observable in the present epoch. This is not the same as the 
number of computations that could have observable consequences here and now. The 
latter is a smaller number. The reason is that only a fraction of the observable universe 
was previously in causal contact with us. At earlier times, the causally connected 
universe comprised smaller amounts of mass-energy, and hence would have had a 
smaller computational capacity. For material now appearing over the horizon, we can see 
the results of its computations carried out shortly after the Big Bang, but not more recent 



computations. A more restrictive bound on the causally relevant computational capacity 
of the universe can be found by integration over the varying size of the universe. Thus, 
the computational rate at time t is found to be,  

Universe s Computational Rate = t
G

cf 53

   

(2a)  

Integrating over time gives the total number of computations by time t as,  

Universe s Total Computations = 2
53

t
G2
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(2b)  

where f ~3.5 is the factor by which ct is multiplied to get the radius of the universe, R 
(see discussion above). This integration makes a difference of a factor of two only, the 
number of computations causally connected to us being 0.4 x 10123.   

Ordinary (baryonic) matter comprises just 4.2% of the universe s density (Spergel 2006). 
The rest is dark matter (~20%) and dark energy (~76%). Hence, the computational 
capacity of the ordinary, baryonic matter alone is ~3.3 x 10121.   

Finally, we note that there is also a bound based purely on space-time limitations, without 
reference to the actual mass-energy content of the universe. This is derived as follows: 
One basis for quantum states is to use spatial localisation. States are distinguished 
because they are at different places. The limit to spatial resolution is provided by the 
Planck length,       
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(3a)  

Similarly, the limit to temporal resolution is provided by the Planck time,      
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(3b)  

These imply that the maximum computational rate density would be achieved if one bit 
of information in every volume 3

PL  were changing every tP seconds. The computational 
capacity of the universe would then be,     
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(4a)  

This is vastly greater than the true bound, 1.25 x 10123, based on the mass-energy content 
of the universe [in fact it equals its square, to a good approximation  see (5)]. Thus, it is 



the mass-energy content of the universe which limits its computational capacity, not its 
size. This is readily apparent from the very low mean density of the universe.  

Speculations Regarding Computational Restrictions on the Early Universe 
The space-time limited number of computations, written algebraically, is,  

Universe s Total Computations = 4
22
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(4b)  

Dividing the square-root of this by (2b) gives a constant,    
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(5)  

Where we have used f ~ 3.5 to derive the value.  

Note that the space-time limit for the universe s computational capacity, (4b), varies as t4 

whereas the mass-energy limit, (2b) varies as t2. This suggests that we can find a time at 
which the two limits become the same. This time is,      
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(6)  

Since the earliest time with any physical meaning is ~tP, Equ.(6) implies that the space-
time limit on the computational capacity of the universe is always more generous than the 
mass-energy based limit  even at the first instant after the Big Bang (zero plus tP). This 
is not a trivial observation in that the divergent energy density at the Big Bang would lead 
to the mass-energy bound on the computational rate density to be divergently fast. If we 
ignored the (probable) physical limitation on times less than tP, we would conclude that 
space-time would be unable to support the maximum computation rate which could be 
delivered by the energy content of the universe at times before ~10-44 s. This would be 
rather paradoxical. We are saved from this conundrum by virtue of the coefficient in (6) 
being < 1. This result depends upon the assumption that the universe s mean density is 

the critical density, 
2Gt8

3
. If we assumed a mean density a factor X larger, then (6) 

would become,      

PP tX2.0t
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(6b)  

This could be used as an argument for why the universe s mean density could not exceed 
X = 25 times the critical density. Spacetime would be unable to support the 
computational needs of the universe s energy inventory at the earliest epochs in such a 
universe. Of course, such universes would long since have collapsed.  



 
(B) Maximum Amount of Information  

B.1 Black Bodies 
We now return to the question of how much information can be written using a given 
finite amount of mass-energy. This is equivalent to asking what the maximum entropy of 
a given amount of mass-energy can be. Now the entropy of a gas of particles in 
thermodynamic equilibrium is essentially just the number of particles (providing that it is 
not so dense as to be nearing the liquid or solid state). Strictly, the number of particles 
must be multiplied by a number of order unity. For example, the entropy of a volume V 
of black body radiation (photons) is simply,       

N6.3nV6.3k/S

    

(7a)  

where N is the number of photons in the volume V and n = N/V is the number of photons 
per unit volume, which is,       
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(7b)  

For a monotonic ideal gas, the Sackur-Tetrode equation gives the entropy as,      
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(8)  

where N is the number of particles of mass m in volume V, and S is their entropy. Note 
that the lower the particle density, the larger is the second term in the {....}. This is 
because the greater amount of room available per particle leads to a greater number of 
accessible quantum states. For example, if we consider the mean number density of 
protons in the universe (0.24/m3), and assume the temperature of the CMB, i.e. 2.7 K, 
then the second term in { } is 63.4, and so the dimensionless entropy is 65.9N. On the 
other hand if we consider hydrogen gas at STP, for which the molecular number density 
is 2.7 x 1025 m-3, the second term in { } is 11.5 and hence the entropy is 14.0N. 
Consequently, even this extreme difference in conditions only makes a difference in the 
entropy per particle of around a factor of 5.   

So, how can we contrive to maximize the entropy for a given amount of mass-energy? It 
is clear from the above discussion that we need simply to maximize the number of 
particles. Subject to conservation of mass-energy this obviously means producing more 
particles of smaller mass. Since photons have zero rest mass, we need to convert 
everything to photons (or possibly to gravitons, these being the only other quanta with 
zero rest mass). The number of photons we get depends on their energy.   



A spurious argument goes like this: We need very low energy photons to maximize their 
number. If conservation of mass-energy were the only limitation then we would conclude 
that there is no finite upper bound to the amount of information that may be represented 
by a finite amount of energy. We merely have to convert all our mass-energy to photons 
of sufficiently low energy. Thus, the amount of information obtainable from a mass M 
using photons of energy E  would be,       

E

Mc
6.3k/S

2    

(9)  

and this is unbounded as 0E . However, this is an incorrect argument because the 

entropy of the photons is only given by (7a) if we assume a black body spectrum of 
photon energies. In fact, for a given energy density, the black body spectrum of photon 
energies is exactly that which maximises the entropy, and hence is the answer to our 
question.  

For a given amount of mass-energy (M) in a given volume V, the temperature, Tbb, of the 
equivalent black body radiation is that which equates with its energy density, i.e.,      
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(10)  

Consequently, substituting (10) into (7a,b) gives the maximum amount of information 
which can be represented by a mass M in a volume V to be,     

Maximum Information = 
4

3

4
1 Mc

V2.1

   

(11)  

Using the total mass and volume of the universe in the current epoch, as derived above 
(i.e., V = 4 x 1080 m3 and M = 3.8 x 1054 kg) gives the maximum information content of 
the universe to be 1093. If we restrict attention to the information possible with the normal 
baryonic matter alone, then this scales by 0.0423/4 = 0.093 to 1092.   

To achieve the computation rate bound derived above (3.3 x 10121) each baryonic bit

 

would have to have been involved in 3 x 1029 computations over the life of the universe, 
an average of ~8 x 1011 computations per baryonic bit per second. There are ~1080 

baryons in the observable universe, so this equates to ~3 x 1041 computations per baryon, 
or an average of ~7 x 1023 computations per baryon per second. [NB: There are ~1012 

times more baryonic bits than baryons  because the baryons have been assumed to be 
converted to photons]. Hence, the maximum possible mean computation time per baryon 
is of order 10-23 s.   

This is a striking result because ~10-23 s is just the characteristic time of the strong 
nuclear interactions! Since we have used nothing in our derivation relating to the strength 



of the nuclear force, this appears at first sight to be a remarkable Cosmic Coincidence. 
But it is not. This characteristic time derives from the size of a typical nucleus (~3 fm), 
which, on dividing by c gives 10-23 s. The size of a nucleus, or proton, also defines the 
order of magnitude of its mass through rc/~M p . Hence a size of order 1 fm sets the 

mass scale of nucleons to be in the order of hundreds of MeV, quite correctly. Now, the 
computation rate per baryon can be derived algebraically using the above arguments to 
be,      

23
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(12)  

i.e. the dependence on G and t cancel out. Since rc/~M p the characteristic 

computation time per baryon is inevitably ~r/c, i.e. the strong interaction time scale. 
There is no coincidence; it is just algebraic self-consistency. Nevertheless, it provides an 
interesting alternative interpretation of the maximum computation rate, namely that it is 
the maximum possible number of strong nuclear interactions.   

B.2 Black Holes 
There is, however, a loop hole in the above derivation of the maximum information 
representable by a fixed amount of mass-energy, M. It is the assumption that the volume, 
V, is also specified and finite. This is explicit in Equ.(11). If the volume is allowed to 
diverge, then so does the available information. Physically this is because the temperature 
of the black body radiation reduces arbitrarily close to zero, with a divergent number of 
photons whose energy becomes arbitrarily small. However, this observation is not 
relevant to our observable universe, which has a finite size (due to its finite age).   

A particular mechanism for generating large entropies for very large, but finite, volumes 
is as follows: Consider the whole mass-energy of the universe to collapse into a single 
enormous black hole! The entropy of a black hole is given by,      
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where A is the surface area of the black hole s event horizon. This compares with the 
entropy of the cloud of gas of the same mass from which the black hole was formed of 

order
p

gas M

M
66k/S . The numerical factor depends insensitively on the density of the 

gas before collapse. We have used the low mean density of the present universe to get 66 
(see above), but using typical terrestrial or stellar densities would give a factor of ~20 in 
place of ~66.   

Because the black hole entropy depends upon mass-squared, whereas the entropy of a gas 
is proportional to its mass, the black hole has far greater entropy. For example, the 
entropy of a solar mass black hole exceeds that of the gas which formed it by about a 
factor of 5 x 1018. In the case of the whole universe (M = 0.4 x 1055 kg), the factor is 



greater still  namely 2x1041. A black hole with the mass of the universe has an entropy 
of ~4 x 10125 (in k units). If we only allowed the baryonic matter to form the black hole 
the entropy would scale by 0.0422 to 7 x 10122. The fact that this approximately equals the 
maximum possible number of computations in the universe to date is again no accident, 
but rather a matter of algebraic equality. Equ.(2b) gives,  

Universe s Total Computations = 2
53
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(2b)  

And in comparison the entropy of a black hole with the universe s mass at time t is,  

Universe-Baryonic-Mass Black Hole Entropy = 2
53
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(14)  

where fb is the fraction of the universe s mass which is baryonic. Although I can think of 
no good reason for doing so, if these quantities are equated they imply,       
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(15)  

Thus, with f = 3.5 we find fb = 3.4%, which is a reasonable estimate of the baryonic 
fraction (actually ~4%). Is this mere numerology or has it any significance? I don t know.  

How can the black hole entropy given by (13) or (14) be interpreted as the information 
capacity of the universe? On the face of it, it would seem to be the amount of information 
locked up within the black hole and hence inaccessible to the universe! There are two 
ways around this conundrum. The first is to regard our universe as being the inside of a 
black hole. This is a respectable hypothesis (see for example Fahr, H.J., and Heyl, M, 
2006a & 2006b). It rather neatly turns the inaccessible information into accessible 
information.   

Intuition suggests that the universe cannot be a black hole because it is too large and has 
too low a density. But this is entirely wrong. The radius of a black hole s event horizon 
is,   
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             (16)  

Inserting the baryonic mass of the universe (4.2% of 0.4 x 1055 kg) gives a black hole 
radius of 2.4 x 1026 m. This compares with 3.5ct = 4.5 x 1026 m. These are remarkably 
close to equality. The reason can be elucidated by substituting for M in (16) in terms of 
the critical density and the size of the universe, R = fct. This gives,       

ctffR 3
bbh

     

(17)  



Hence, equality of the black hole radius with the radius of the observable universe,  
R = fct, obtains for fb = 1/f2. For f = 3.5 this gives fb = 8% - which is reasonably close to 
the best current estimate of 4.2%.   

Returning now to the idea that a universe-mass black hole has formed and the 
information is trapped within it  how can we get it out again? Well, this will happen 
automatically through Hawking radiation. Admittedly you will have to wait a truly 
humungous length of time. The temperature of a black hole is,  
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             (18)  

So our universe-mass black hole will have a temperature of only ~10-32 oK. At this 
temperature it s going to take quite a while to radiate away ~1055 kg of mass-energy. 
When it has done so, however, the entropy released into the universe will be at least that 
of the black hole  as you would expect. (In fact, I think it is greater by a factor of 4/3). 
Specifically, I estimate the entropy of the emerging radiation, integrated over time, to be 
roughly,     
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        (19)  

where the Planck mass is kg10x2.2
G

c
M 8

Planck . Thus we retrieve the maximum 

information capacity of ~5 x 10125 (in k units), or ~10123 including only baryonic mass.   

Note that the black hole has formed from material which had entropy not exceeding 2.8 x 
1093 and yet, on evaporation, the entropy released is far greater, up to ~3 x 10126. The 
black hole has achieved this trick because its temperature is so very low that its black 
body photons are of extremely low energy. It takes an awful lot of them to make up ~1055 

kg of mass-energy. Thus, a black hole is a great way of chopping the mass-energy of the 
universe into really, really small pieces. But you have to be willing to wait ~10132 billion 

years for it to evaporate. (Evaporation time is about
4

32

c

MG
5120 ). 



CONCLUSIONS  

[1] The minimum energy which must be dissipated to perform a computation is zero. 
This can be achieved only for a computer based on reversible logic, in which case 
the computer is also thermodynamically reversible.  

[2] The maximum computing rate of a system with total mass-energy E is
E2

. A very 

fast reversible computer thus requires the loan of sufficient energy to drive its 
rate, but will return the energy unchanged at the end of the computation. 
( Unchanged means without entropy increase).  

[3] An irreversible computer which dissipates energy at the minimum rate needed to 
support its computing speed (C bits per second) consumes power 2/CP 2 . 
This is likely to be the lower limit for computers which are not specifically 
devised to be reversible. Current computers consume about 1016 times this power.   

[4] The upper limit to the physically possible computing rate that could be supported 
by the mass-energy within each cubic meter of interstellar space is 5.2 x 1024 bits 
per second, a pretty impressive figure for just 6 hydrogen atoms.   

[5] This is based on the average universal density and implies a maximum computing 
rate by the whole inventory of mass-energy in the observable universe of 2 x 10105 

bits per second.  

[6] The maximum number of computations that could have been carried out by the 
total mass-energy which is observable at the present epoch is ~10123. The 
maximum observable number of computations is about half this.  

[7] At another epoch this would be 2
53

t
G2

cf
, where f = R/ct and R is the radius of the 

observable universe and t its age.   

[8] The maximum computing rate of the universe can also be interpreted as every 
baryon undergoing strong nuclear interactions at the maximum possible rate 
(~1023 per second per baryon).  

[9] The limitation on the universe s computing capacity due to the Planck scale is 
vastly less restrictive than that above due to the finite mass-energy content of the 
universe.  

[10] Spacetime can support more computations than the universe s mass-energy 
content even at the first instant of time (t = tP).  



[11] The maximum amount of information which can be represented by a mass M in a 

volume V is
4

3

4
1 Mc

V2.1 .  

[12] The information capacity of the universe in the present epoch is ~1093.   

[13] The information capacity of the baryonic portion of the universe in the present 
epoch ~1092.   

[14] By regarding the universe as a black hole, the total information capacity of the 
baryonic material including gravitational degrees of freedom can be estimated to 
be ~7 x 10122.  

[15] Comparing [6] and [14], each bit of information has been changed the order of 
just one time during the life of the universe. (Dubious? This is the ratio of two 
upper bounds  what does that mean?).  

[16] The hypothesis that the universe is the interior of a black hole, and that its horizon 
is determined by the baryonic mass alone, i.e., that fctRctffR univ

3
bbh , 

implies a baryon fraction of %8f/1f 2
b  (using f = 3.5). This compares with 

the best current estimate of 4.2%.  

[17] The entropy of a black hole with the universe s mass at time t is 2
53

2
b t

G

cf
f . 

Equating this with the universe s total computing capacity, 2
53

t
G2

cf
, implies a 

baryon fraction 
32b

f2

1
f . Thus, with f = 3.5 we find fb = 3.4%, which 

compares well with the best current estimate of 4.2%.   
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