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I shall use the term orthogonal in the following sense: real vectors v and u are 
orthogonal if & only if 0vuvu
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T ; a matrix O is orthogonal iff 1T OO ; an 

orthogonal transformation of a matrix M is MOOM T where O is an orthogonal 
matrix. These conform to standard mathematical usage of the term orthogonal . In 
particular, the orthogonality of two real vectors is identified with their inner (dot) 
product being zero. If ui and vi are Cartesian components, albeit in general in an N-
dimensional space, this shows that the orthogonality of two real vectors can be 
identified with the vectors being perpendicular in the usual way.   

It is shown below that the normal modes of a structure are not orthogonal, despite the 
usual claims. This utterly confounded me for some time. Theorems follow:-  

(1) If a matrix M can be diagonalised by an orthogonal transformation, O, 
then O is composed of the normalised eigenvectors of M.  

Proof:  Put iiiM
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(Equ.1)  
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(Equ.3)  

Since is diagonal, its normalised eigenvectors, i , are just (1,0,0,0 )T, 

(0,1,0,0, )T, (0,0,1,0,0, )T etc and the on-diagonal elements are the eigenvalues, i . 
From the inverse of the second of Equs.3 it then follows that the transform O is 
composed of the eigenvectors of M, i.e.,  
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(Equ.4)  

QED.   

Corollary A: There is only one (unique) orthogonal matrix which diagonalises any 
given matrix M (up to arbitrary ordering of the columns), i.e. the eigenvectors.   

Corollary B: A matrix which can be diagonalised by an orthogonal transform must 
have orthogonal eigenvectors.  

Corollary C: If a matrix is diagonalised by a similarity transform, i.e. MSSM T is 
diagonal, and if S is not the same as the matrix of eigenvectors (up to re-ordering the 
columns) then S is not orthogonal.   

(2) Normal Modes Are Not Orthogonal (!) 
Normal modes are the vector solutions of,  
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for real symmetric matrices K and M. There is no a priori reason to expect the normal 
modes to be orthogonal, in the above defined sense. Consider the case when the mass 
matrix is not singular (not always true, but it suffices to establish the exception). In 
this case we can re-write the dynamic equation, Equ.5, in standard eigenvector form 
as,     
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(Equ.6)  

Now M-1K is in general NOT symmetric, despite both M and K being symmetric. (In 
fact, even when M is diagonal M-1K will not be symmetric in general). So, there is no 
reason for the normal modes to be orthogonal in the above defined sense, i.e. we can 
expect,    
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(Equ.7)  

Nevertheless it follows simply from Equ.5 that,     
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Standard texts (confusingly!) seem to use Equ.8 as the definition of orthogonal in 
the context of normal modes. See for example Theory of Vibrations by Thomson & 
Dahleh, Equs.6.6.6 and 6.6.7. It would be better to refer to Equ.8 as weak or 
generalised orthogonality, or something different anyway.  

It follows from Equ.8 that the Modal Matrix, defined by the normal modes,     
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(Equ.9)  

provides a similarity transform which diagonalises both K and M, but P is not 
orthogonal by virtue of Equ.7.  

In fact, P could not possibly be orthogonal, by virtue of Theorem 1. This is because, 
being a real symmetric matrix, K has orthogonal eigenvectors. Hence K can be 
diagonalised by an orthogonal transformation composed of these eigenvectors, like O 
in Equ.4. The same is true of M, but the orthogonal matrix of eigenvectors which 
diagonalises M, call it OM, will in general be different from that which diagonalises K, 
called OK. But it is clear from Equ.5 that, unless M is a multiple of the unit matrix, the 
normal modes i cannot be the eigenvectors of K (and vice-versa). Hence P differs 
from OK, and, since P diagonalises K, Theorem 1 implies that P cannot be orthogonal.   

In summary, K is diagonalised by an orthogonal matrix OM and also by a non-
orthogonal matrix P. The latter is composed of the normal modes, which are not 
orthogonal. Similarly, M is diagonalised by an orthogonal matrix OM, which will 
generally differ from OK, and also by the same non-orthogonal matrix, P, which 
diagonalises K.  

Example: See Theory of Vibrations by Thomson & Dahleh, Example 6.7.1, where 
the normal modes, and hence P, are clearly not orthogonal.   



(3) The Expansion Theorem: Any vector can be expressed as a unique 
linear combination of the normal modes.  

This would be immediately obvious for orthogonal modes because these vectors 
would then form a mutually perpendicular coordinate system . However, the weak 
orthogonality condition, i.e. Equ.8, is sufficient to guarantee this crucial property, as 
follows: If an arbitrary vector is written 
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A , noting that the same Ak would result if M were replaced by K 

in this formula. What is needed is to establish that the normal modes span the whole 
space, otherwise only vectors within a subspace could be written

k
kkAv . This is 

equivalent to requiring that all the normal modes be linearly independent, which in 
turn is equivalent to requiring that the determinant of P be non-zero. That this must be 
the case follows from the similarity transform: KPPK T , where K is diagonal. 
Since the determinant of the transpose of a matrix equals the determinant of the 

matrix, it follows that KPK
2

. But each diagonal element of K is (twice) the 

energy associated with that normal mode, i.e. i
T
iii KK (no summation). In 

general, therefore, these terms will be positive definite. Since the determinant of K is 
non-zero, it therefore follows that the determinant of P must be non-zero. This 
establishes that an arbitrary vector can be written 

k
kkAv .  

So, the usual assumption that all possible motions can be expressed as a sum over 
normal mode motions is still correct (phew!) despite the normal modes not being 
orthogonal in the conventional sense1.    

                                                     

 

1 The only problem appears to be if there is a zero energy mode (sometimes called a 
mechanism ). This would be a mode of deformation which resulted in no resistance, i.e. no 

forces would occur under such a displacement. But this does not seem likely in physically 
realistic structures  unless there really is some free articulation.  
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