
Noether s Theorem and the Origin of Spin 
Throughout this Section we work in units with c = 1  

1. What is Noether s Theorem? 

Noether s Theorem states that for every continuous symmetry of a Lagrangian 
dynamical system there corresponds a conserved quantity. 

For example, the absence of an explicit time dependence in the Lagrangian implies 
that the dynamical behaviour of the system will be the same tomorrow as it is today 
and was yesterday. This means that the Lagrangian is invariant under the action of 
translation in time. Hence there must be a conserved quantity. It turns out that this 
conserved quantity is energy. The conservation of energy for an arbitrary Lagrangian 
field theory is derived here. 

A second example is invariance under spatial translations. The physical laws 
controlling the behaviour of a system are expected to be the same here as on Mars, or 
our space programmes will be in big trouble. What is the corresponding conserved 
quantity? Since there are three spatial dimensions, there are three conserved quantities 
 the three components of momentum. The conservation of momentum for an 

arbitrary Lagrangian field theory is derived here. 

The third example is invariance under spatial rotations. The isotropy of space implies 
there should be a corresponding conserved quantity. There is. It is the angular 
momentum, the conservation of which is also derived below. 

All the above examples are for symmetries of the Poincare group. So what about 
invariance under boosts - the equivalence of inertial observers? What quantity is 
conserved as a result? There is such a conserved quantity. There must be by Noether s 
Theorem. However the status of this quantity is rather different  which is why it has 
no familiar name. We explain this below.  

The Poincare group does not provide the only possible symmetries. There may be 
internal symmetries, independent of spacetime. For example, a Lagrangian for a 

complex field may depend only upon absolute magnitudes and hence be invariant if 
the field is multiplied by a phase factor. This leads to a conserved quantity which can 
be interpreted as electric charge.  

In a similar manner the various internal symmetry groups of particle physics [SU(2), 
SU(3)] lead to a multitude of conserved quantum numbers. Often these quantum 
numbers (charm, strangeness, etc.) are conserved only under the action of a limited 
number of the fundamental forces, generally only for very short periods. This is 
because some of the forces of nature do not respect the corresponding symmetry.  

In this article we shall concentrate on the Poincare symmetries as they apply to fields 
of arbitrary spin. However we shall also indicate how the conserved quantities 
corresponding to internal symmetries can be derived. 

This analysis also shows where spin comes from. The spin degrees of freedom are 
assumed present in the fields from the start. They correspond to covariance under 
Lorentz transformations, as discussed elsewhere. However, in this analysis the reason 
why these degrees of freedom are called spin is justified. They are shown to carry 
angular momentum.   



2. The Poincare Symmetries and Their Conserved Quantities 

The fields in question will be written xr . The subscript r serves two different 
purposes. Firstly it labels the spin degrees of freedom of a given field. Secondly it can 
also address the presence of more than one field in the system. The Euler-Lagrange 
equations for the Lagrangian ,, rrL  are,     

,rr

LL     
(1) 

This applies for all r, covering all spin degrees of freedom of all contributing fields.  

It is important to distinguish clearly between changes due to coordinate 
transformations and changes due to transformations amongst the spin degrees of 
freedom of a field at a point. We shall use x  and x  to refer to the same point in 
spacetime as seen by two observers, S  and S . Similarly, the same spinorial or 
tensorial field seen at this point has components r  as seen by S , but components r

 

as seen by S . For a scalar field there is therefore no difference, . However, care 
is needed because a spacetime transformation can affect both the coordinates of the 
point in question and the components of a spinorial/tensorial field. The effect of a 
general, but infinitesimal, Poincare transformation on the coordinates is,     

xxx     (2) 

Recall that x  and x  refer to the same point in spacetime, and the transformation (2) 
describes how to find the coordinates seen by observer S  given those seen by S . 
However they are both observing the same field at the same point. The  are anti-

symmetric and consist of the rotation angles and boost parameters (see §??).  

Observer S  sees the field xr  whereas S  sees the field xr . Though these are 
the same field at the same point, the differing orientation and/or states of motion of 
the two observers means that they do not see the same numerical field components. 
Instead they are related by whatever spin/tensor representation of the Lorentz group is 
appropriate for that field type. Hence we can write, for an arbitrary but infinitesimal 
transformation, 

Spin > 0:   xSxx srsrr 2

1

   

           (3a) 

Spin = 0:   xx rr

     

           (3b) 

where repeated indices are summed, in the case of Greek indices over the 4 spacetime 
dimensions, and for Latin indices over the spin degrees of freedom for the field in 
question. If there is more than one field, Equ.(3) applies separately for each one (i.e., 
for different ranges of the subscript r). In (3a) the rotation/boost parameters  are, 

of course, necessarily identical to those appearing in (2), since they are defined by the 
relationship between S  and S . Hence, since the  are anti-symmetric, the 

representation matrices of the Lorentz group appearing in (3a) can be assumed anti-

symmetric also, i.e., rsrs SS .  



I used to get tied in knots when deriving Noether s conserved quantities as a result of 
the different field differentials that occur. It is important to distinguish between three 
things, 

The local differential:  xSxxx srsrrrL 2

1

 
           (4a) 

or, for spin zero (scalar) 0xxx rrrL

    
           (4b) 

The functional differential: xxx rrr

     

(5) 

The gradient:   x
x

x
xxx r

rrr

   

(6) 

The three are related since xxxxxxx rLrrrrrr . To 
first order in small quantities this gives, 

xxx rrrL

    

(7) 

since xr  only differs from xr  by a second order term. Re-arranging and 
substituting (4) and (6) gives, 

x
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x
xSxxx r

srsrrLr 2

1  
(8) 

In (8) it is understood that the term in rsS  is dropped for a scalar field. 

Now the two observers must see the same Lagrangian, i.e.,    

xxLxxL rrrr ,, ,,

   

(9) 

(The alert reader may be worried that because L is a Lagrange density, the change in 
volume element between observers might mean that L should not be invariant. This 
would indeed be the case if L were a density in the sense of per unit spatial volume . 

But, in fact, L is a density per volume element of spacetime, i.e., per xd 4  not per 

xd 3 , and the 4-volume element is a scalar, and therefore so is L).  

In general, the total change of a function-of-a-function when the independent 
functions are changed and the point at which they are evaluated is also changed, is 
given by, for example,    
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Applying this to the difference between the LHS and RHS of (9) gives,            (11) 
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On the RHS of (10), evaluation of all quantities at x is understood. Here r

 

corresponds to the differential defined by (5) and given by (8). The Euler-Lagrange 
equations, (1), allow us to re-write (11) as, 
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Now substituting for r from (8) gives, 

0
2

1

,

x
x

L
x

x

x
xS

L r
srs

r  

           (13) 

Again it is understood in (13) that the term in rsS  is dropped for a scalar field. This is 
the master equation from which the conservation laws corresponding to all types of 
symmetry can be derived. 

2.1 The Energy-Momentum Tensor 

It is convenient to consider spacetime translations separately from rotations and 
boosts. In (2), the former have non-zero  but 0 , whereas for the latter it is 

the other way around. For spacetime translations, xxx , and (13) 
becomes, 
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But note that LL
x

L
, where  is the Minkowski metric tensor. So 

(14) becomes, 
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This is true for arbitrary  and hence the rank 2 tensor, 

L
x
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           (16) 

has zero divergence,      

0T               (17) 

Hence the four quantities defined by,      
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are conserved, i.e., (17) implies that,      

0
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In (18) it is understood that the spatial integral extends over the whole of space. Note, 
however, that being divergence free, (17), expresses the more general property of 
continuity. The rate of change of the quantity in question within any region of space is 
balanced by the flux of the quantity out of the boundary of the region,    
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Global conservation, (19), follows from local continuity, (20), in the limit that the 
region V is the whole of space and assuming that the fields vanish at infinity such that  



0
V

i
i dST  as the boundary V .  

From these purely mathematical observations we conclude that there are 4 types of 
stuff , labelled by the index , whose density is 0T  and whose vectorial flux 

through unit area per unit time is iT .  

We may suspect that the P  can be interpreted as an energy-momentum 4-vector due 
to their origin in variations x  and due to the correspondence in quantum mechanics 

iP . Actually we do not even need quantum mechanics to make this link since 
we know that an infinite dimensional unitary representation of the translation 

operators of the Poincare group is provided by iP . Consequently T  is 
called the energy-momentum tensor. Confidence that this is an appropriate 
interpretation is gained by consideration of specific cases, including the classical 
fields. This will be treated in a separate article. 

Assuming this interpretation is sound, it follows that 00T  is energy density, and 0iT  is 
the vectorial flux of energy through unit area per unit time. However, iT 0  is the 
density of momentum in the direction i. Finally, jiT  is the flux of the ith component of 
momentum per unit area per unit time in the direction j.  

These physical interpretations may not immediately suggest that the energy-
momentum tensor is symmetrical. Why should the energy flux ( 0iT ) equal the 
momentum density ( iT 0 )? We shall see in §?? that there are good physical reasons 
why this should be so. Hence we really need the energy-momentum tensor to be 
symmetrical. To name but one reason straight away, general relativity requires  

TGG 8 and so the symmetry of the Einstein tensor, G , implies that the 

energy-momentum tensor must also be symmetric.  

But note that there is nothing about the definition (16) of the energy-momentum 
tensor to suggest that it must be symmetric. Indeed, we shall find that evaluation of 
(16) for example Lagrangians shows it not to be symmetric! So how can these two 
observations be consistent? This is discussed further in §??. 

2.2 Rotational Symmetry  The Conservation of Angular Momentum and the 
Origin of Spin 

We now consider a general Lorentz transformation of coordinates but with no 

translation, i.e., xxxx . Substitution into (13) gives, 
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Putting LL
x

L
 this becomes, 
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Note that the term x  can be taken inside the derivative  because 

0x  by virtue of the anti-symmetry of . The 

second and third terms in (22) can be re-written in terms of the energy-momentum 
tensor using (16) as, 
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However we cannot conclude that the coefficient of  in (23) is zero because the 

anti-symmetry of  means that it is only the part of this which is antisymmetric in 

 which must be zero. Hence we write, 

TxTxxS
L

srs
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          (24) 

Note that rsrs SS , so that , and 0 then implies, 

0

     

           (25) 

Consequently we have again found conserved quantities labelled by . Since 

 there are six conserved quantities defined by,     

xdM 30
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As before, i , for spatial indices i, can be interpreted as the flux of these quantities. 
But what are they?  

In this section we will consider only the spatial components, ijM . If we look firstly at 
the second term in (24)  which would be the only term for a scalar field  we find, 

ijjiij
orbit TxTxxdM 003

   

           (27) 

But our tentative interpretation of jT 0  is as the jth component of the density of 

momentum. So jiTxxd 03  is the ij component of angular momentum due to the field 
in a small volume element, i.e., due to the momentum in the j-direction multiplied by 
the distance in the i-direction. So if ijk is a permutation of 1,2,3, then 

ijji TxTxxd 003  is the angular momentum in the k-direction due to the fields in 

this small region. So we can interpret ij
orbitM  as the angular momentum of a scalar 

field, or that part of the angular momentum of a field with spin degrees of freedom 
which does not depend upon the spin degrees of freedom. 

Specifically, because ij
orbitM  arises from products of linear momentum and 

perpendicular distance, it is the orbital angular momentum of the field.  

The first term in (24) must have an interpretation compatible with the second, 
otherwise it would make no sense to add them together. This allows us finally to 
interpret the first term in (24) as the angular momentum which arises from the spin 
degrees of freedom, rather than from products of linear momentum and perpendicular 
distance. This justifies the use of the word spin for the degrees of freedom 



associated with the rotational transformations under the representation rsS  of the 
Lorentz group. The term spin encapsulates a form of angular momentum intrinsic to 
the field, rather than resulting from orbital angular momentum.      
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The definition of the field conjugate to r  is, 

0,r
r
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So (28) can also be written,     

xSxdM s
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The total angular momentum is thus,     

ij
spin
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           (31) 

It is only this total angular momentum which is conserved as a consequence of (25), 
i.e.,      

0
dt

dM ij    

           (32) 

This is the origin of spin. It is required for any theory formulated in Lagrangian terms 
and for which the fields transform under rotations according to a representation of the 
Lorentz group other than the trivial one-dimensional representation (i.e., other than 
scalar fields).  

Note that there is nothing quantum-mechanical about this. The fields in question 
could be purely classical. Admittedly there may be a difficulty interpreting the half-
integral spin fields as classical fields due to their essentially complex-valued nature. 
But this still leaves, at least, the vector and tensor fields, which are certainly perfectly 
good classical fields  and must possess spin.  

So why does spin generally appear to be an overtly quantum mechanical concept? The 
reason, I suspect, is due to the rotation group being the only compact subgroup of the 
Poincare group. This means that it is the only subgroup which has finite dimensional 
unitary representations. Consequently it is only the rotations which correspond to 
observables with eigenstates which have discrete eigenvalues ( mj, ). Because the 
angular momentum states are discrete, the quantum properties are more apparent. For 
example, a spin half particle can be spin up or spin down with respect to a given 
measurement direction  but no intermediate value will ever be measured. This is 
obviously and overtly quantum.  

Interpreted classically there is no reason why the spin angular momentum given by 
(28) should not take a continuum of values, rather than being confined to the 
eigenvalues of the representation S . This is true even if S is the ½-spinor 
representation or the vector (spin 1) representation. Thus, the spin angular momentum 
of the classical electromagnetic field can be evaluated using (28), but it is not 
(classically) confined to discrete values. Thus it is the measurement theory of 
quantum mechanics which distinguishes the quantum from the classical, not the mere 
existence of spin per se. This holds that measurements can only produce results which 



are eigenvalues of the operator representing the quantity measured. Where the 
representation is finite, as for the rotations, these eigenvalues are necessarily a 
discrete set.  

Whilst the same measurement theory also applies to, say, the measurement of energy 
or linear momentum, these correspond to a non-compact subgroup of the Poincare 
group. Now in the quantum mechanics of single particles (as opposed to field theory) 
symmetries must be enacted on quantum states as unitary operators (though anti-
unitary operators will also do - Wigner s theorem). But non-compact Lie groups have 
no finite dimensional unitary representations. Hence translations in Minkowski 
spacetime must be implemented in quantum mechanics as infinite dimensional unitary 
representations, i.e., as differential operators acting on a space of continuous 
functions. Their eigenvalues then take a continuum of values. Hence, whilst the 
measurement theory of QM still applies, it is not so obvious since there is no 
discreteness in the set of possible energy or momentum values.  

The translation subgroup can be made compact by confining the particle to a box with 
suitable boundary conditions. This causes the possible energy and momentum states 
to become quantised into a discreet set, labelled by quantum numbers l,m,n in the 
manner familiar from solving the Schrodinger equation for this problem. But we see 
now that the origin of this discreteness is the compactness of the relevant Lie group.  

2.3 Is There a Conserved Quantity Corresponding to Covariance under Boosts? 

Well, we know there is  we have already derived it in the form of Equ.(25). The 
boosts correspond to one of being zero. The conserved quantities are, 

xdMM jjj 30000              (33) 

But, before we examine (33) more closely, two little problems arise. The first is that, 
whilst we could easily have guessed the previous conservation laws, i.e., the 
conservation of energy, momentum and angular momentum, there now appears to be 
no obvious conserved quantity left. What can it be? 

The second problem seems to confirm the first. It comes from considering the 
commutation properties of the generators of the Poincare group (i.e., the Lie algebra), 
which are (see §??),                   (34) 

njknkj LiLL ,  njknkj LiKK ,  njknkj KiKL ,  

njknkj PiLP ,  0, PiKP jkkj

  

0, PP 

0,0 kLP   kk iPKP ,0 

where L , K , P  are the generators of rotations, boosts and spacetime translations 

respectively. Now in quantum mechanics the energy 0P  will be equated with the 
Hamiltonian, and we will interpret the rate of change of a quantity with the 

commutator: 0, PQ
dt

dQ
i . Consequently conserved quantities should be associated 

with operators which commute with 0P . This works for linear momentum, since 
0, 0PPj . It also works for angular momentum since 0,0 kLP . And it trivially 

works for energy, since obviously 0, 00 PP . However, it would appear that the value 



taken by the boost operator K  is not conserved because kKP ,0  is not zero. So just 
what is the meaning of (33) and how is it compatible with kk iPKP ,0 ? 

It is quite common in text books for authors to shy away from this question altogether. 
And even when they do not, they usually only address the meaning of part of (33). 
We shall also offer only a partial explanation here, putting off the rest until §?? We 
have, 
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          (35) 

However in this article we shall consider the meaning of the second term alone, i.e., 
the only term which would occur for a scalar field, 

000030 TxTxxdM jjj
scalar

   

                      (36) 

But jj tPTxxd 0
0

3  using (18). Similarly, if we normalise 003 Txxd j  by the total 

energy, 003 TxdE  we see that,     
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is the position of the centre of mass of the field system. In this context a better name 
might be centre of energy , since that is what (37) literally produces. But, of course, 
there is no difference in relativity theory (apart from the units, i.e., that factor of c2). 
Putting these together we see that the quantity which Noether tells us is conserved is, 

jjj
scalar EtPM 0                (38) 

Now since we already know that energy and momentum are conserved, by (19), the 
conservation of the quantity (38) gives, 
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This tells us that, 
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So, the total momentum equals the total energy times the velocity of the centre of 
mass-energy (recall we are working in units with c = 1). This is the expected result, of 
course, and corresponds exactly to the relativistic momentum of a single particle 
( mvEvp ) and reduces to the non-relativistic value of momentum for v << c 
( mvp ). However, for an arbitrary system of fields, quite possibly many different 
fields undergoing complicated interactions, we had no right to assume that this 
relation would hold. The energy and momentum might be widely distributed over a 
large region. So Noether s theorem has a non-trivial  indeed a crucial  implication 
when applied to boosts.  

Nevertheless we can ask what is the meaning of the quantity in (38) which is 
conserved? We note that its value depends upon the coordinate system, both the 
spatial system and the origin chosen for time. It is this latter feature which renders the 
quantity rather different from the other conserved quantities. By a suitable choice of 



the zero datum for time, the quantity in (38) can always be chosen to be zero. And 
since it is conserved, it is always zero.  

So now we see the resolution of the apparent conflict between the implications of the 
Poincare commutators, (34), under a Hamiltonian interpretation, and Noether s 
theorem, under a Lagrangian interpretation. The commutators are quite right in 
indicating that there is no physical quantity of interest arising from invariance under 
boosts. The entity resulting from the application of Noether s theorem, (38), can be 
taken to be identically zero, forever.  

But, on the other hand, the application of Noether s theorem to the boosts does 
produce an extremely important physical equation, namely (40), which specifies the 
total momentum in terms of the total energy and the centre-of-mass velocity. This is 
important and non-trivial and results from the time derivative of (38) being zero, 
despite the fact that the quantity in (38) is itself of no interest. 

So how does the Hamiltonian / commutator perspective reflect this? The answer is 
that, although kk iPKP ,0  implies that there is no interesting conserved quantity 

associated directly with K , nevertheless the fact that 0,0 kPP implies 

0,, 00 kKPP . Since 
dt

dK
iKP k

k,0  this means that the object whose 

conservation is interesting will be 
dt

dKk , rather than K  itself. This aligns exactly with 

what has been found from Noether s theorem: it is the time derivative of (38) which 
has the important physical implication.  

3. Examples of Noether Conservation for Other Symmetries  The Conservation 
of Charge 

Consider now the case of purely internal symmetries. That is, transformations which 
mix the fields r  but have no affect upon spacetime. We can write,     

xSxxx srsrrr
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Since 0x , (13) becomes, 
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And hence the conserved quantities are, 
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with    0

     

           (44) 

Hence there is one conserved quantity for each value of , corresponding to each 
continuous parameter in the available symmetry, (41). The simplest example is 
provided by a complex field whose Lagrangian is invariant under an arbitrary change 
of phase of the field, i.e.,     

iei

    

         (45a) 

The Hermetian conjugate field transforms as, 



    
ie i           (45b) 

Note that the field and its conjugate count as separate fields, i.e., the subscript r in 

(43) takes two values, say 1 and 2, for which iS11  and iS22 , and 012S . Hence 

(43) gives, 
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           (46) 

Suppose we have a Lagrangian whose only term in the derivatives of these fields is 

2

1
. Then (46) gives,     

i              (47) 

This  turns out to be interpretable as the electrical 4-current density. The Noether 
conserved quantity is thus electric charge, given by,     

xdixdQ 330
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where we have used the conjugate fields 0,
0,

L
.  

Note that invariance under a phase change is effectively a symmetry under group 
U(1). Consequently we see that the conservation of charge is due to U(1) symmetry. 

In the same manner, SU(2) and SU(3) symmetries lead to the conservation of the 
various flavour numbers / hypercharges of particle physics. 

Note again that no quantum mechanical elements have been used here. Whilst the 
formalism looks very like that of quantum fields, actually there is nothing specifically 
quantum mechanical about the derivation. Admittedly the use of a complex field 
would be unusual in classical field theory, but apart from this the conservation of 
charge as a result of a U(1) symmetry could equally be interpreted as classical 
physics.  

4. Loose Ends 

We have left two loose ends to be sorted out. Firstly, in §2.1, we alluded to the 
requirement for the energy-momentum tensor to be symmetrical, but noted that (16) 
will generally not produce a symmetrical result. Where does this leave us? 

The second issue is that, in discussing the interpretation of the Noether quantity 
conserved under boosts in §2.3, we confined attention to the case of a scalar field. 
This leaves unexplained what might be the meaning or significance of the spin 
dependent term in (35). 

Both these questions are taken up in §?? 
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