
Musical Scales  

Questions that have puzzled me include,  

(a) Given that there is a continuous sound frequency spectrum, why are there 12 notes 
(semitones) in an octave? Why not 10 or 16 or any other number? There is, of course, 
space for an indenumerable infinity.  

(b) Why does each scale contain just 8 notes (or, rather, 7 notes, excluding the repeated 
tonic)?  

(c) Why are scales so weird? That is, why do different scales have a different number of 
sharps/flats, and what determines what sharps/flats a given scale should contain?  

(d) What is it that determines which combinations of notes constitutes a chord (as opposed 
from, I presume, a discord?)  

(e) Why do minor scales produce music with a different emotional colour from that of major 
scales?  

Let me confess immediately that I intend to be culturally biased. I will be discussing only the 
Western chromatic scale. The fact that other scales are possible betrays an important fact: that 
there is no categorical, definitive, unassailably mathematical answer to the above questions. 
We are in the realms of history and taste when discussing musical scales.  

Nevertheless, there are interesting mathematical issues associated with musical scales which 
at least partly constrain how they may be devised. In the following discussion, bear in mind 
that the sound frequency spectrum is continuous. The whole issue under discussion is why 
are certain frequencies picked out to constitute our notes and chords

  

The (Wrong) 8 Note Scale  

Imagine the earliest musicians. For sake of argument, assume they had a stringed instrument. 
In might be a very primitive affair with just a single string stretched between two fixed points. 
Having discovered that plucking such a stretched string produced a pleasant sound, what 
next?  They would quickly tire of a single note. It would, quite literally, be monotonous. A 
new discovery would follow at once: that holding the string fixed at some intermediate point 
causes the note to change. The most obvious point to choose is the mid-point of the string. 
Even the least musical person would recognise that there is a clear harmonious relationship 
between the original note and the new one. The octave is born! This is the first illustration of 
the interplay between matters of taste and mathematical definition. The motivation for the 
octave is simply that the new note is pleasing to the ear when compared with the first. 
Mathematically it corresponds simply to a doubling of the frequency, or halving the string 
length.  

The relation of a note to its octave note is so fundamental that we refer to these two notes as 
being the same , albeit one octave apart. So, our early musician would be no closer to 
producing complex and emotionally involving music. He would still be stuck with monotony. 
Nor would halving the length of the string again help. This would simply produce the same 
note again  but one octave higher still.  

The answer  and our musician would have discovered it more quickly than it has taken me to 
write these paragraphs  is to divide the string into parts other than just halves . Now what 
we, and our ancient friend, are after is a division of our octave into intermediate notes. If we 
can do this for our first octave, then we can do it again for every higher (or lower) octave. So, 



we need to leave more than half the string vibrating (that is, we need to hold it at a point less 
than half way along its length). Having already tried the mid-point, the next most obvious 
point to hold is the one third position. This leaves 2/3 of the string vibrating, and hence 
produces a note of frequency 3/2 times the base (open string) frequency. This is the second 
note that we have discovered for our octave. I will confound you utterly by telling you that it 
is known as the fifth . This is to anticipate that it will turn out to be the fifth, in order of 
pitch, in the scale we are building 

 
but we don t know that yet. (Similarly, we have as yet no 

motivation for the term octave ).  

Now it gets interesting  or messy, depending upon your point of view. Let us take the 
obvious approach. The next thing is to hold the string at the ¼ position, leaving ¾ of the 
string vibrating, and hence producing a note of frequency 4/3 times the base (open string) 
frequency. In the same way holding at the 1/5 and 1/6 positions gives notes of frequencies 5/4 
and 6/5 times the base frequency. We can also hold the string at a position 2/N, providing that 
this is still less than ½. Doing this for N=4 or 6 just reproduces ½ and 1/3, but for N=5 gives a 
new note of frequency 5/3 times the base frequency. This is how our attempt at building a 
musical scale is shaping up so far,     

First Attempt at a Musical Scale

 

String Held At

 

      Frequency*      Ratio of Adjacent Frequencies

 

Modern Name

 

0  1      C (open string)  
1/6  6/5  1.2    D#  
1/5  5/4  1.041666   E  
¼  4/3  1.066666   F  
1/3  3/2  1.125    G  
2/5  5/3  1.111111   A  
½  2  1.2    C 

     *these are in multiples of the open string frequency.  

Now our early musician would be playing these notes, probably one after another in the 
manner of our scale playing today, and judging their sound. It s difficult to do this in print! 
However, the ratio of adjacent frequencies, given above, is an indication of how far apart 
the adjacent notes of our incomplete scale would sound. For example, the first two and the 
last two are rather too far apart, having a frequency ratio of 1.2, whereas the second and third 
are rather too close together, having a ratio of only 1.041666. This scale would sound 
hopeless (try it  all these notes are on modern instruments  their names in modern notation 
are given in the last column, assuming an open string tuned to C).  

So, based on how our first attempt at a scale sounds, and to make the frequency ratios more 
uniform, we might want to insert an extra note between the first pair and the last pair, but 
eliminate the third note which is too close to the second. Hence we might look for something 
like,  

Second Attempt at a Musical Scale

 

String Held At

 

      Frequency

 

       Ratio of Adjacent Frequencies

 

Modern Name

  

0  1      C  
0.0871291 1.2  1.0954451   midway [C#, D]  
1/6  6/5  1.0954451   D#  
¼  4/3  1.1111111   F  
1/3  3/2  1.125    G  
2/5  5/3  1.1111111   A  
0.4522774 2/ 1.2  1.0954451   midway [A#, B]  
½  2  1.0954451   C 

(where we have split the adjacent ratios of 1.2 into a product of pairs of ratios, each being 1.2 = 
1.0954451. The product of all the ratios, must, of course, be exactly 2). 



 
This proposed scale achieves two things; (i)a very good approximation to uniform note 
spacing [by which we mean uniform adjacent note frequency ratios  which is really 

uniform spacing in log(frequency)], and, (ii)it preserves all but one of the notes based on the 
simple ratios derived above. Moreover, it has 8 notes  though we did not constrain it to at the 
outset. So, this is the first intimation of the origin of the 8-note scale. Also note that our first 
non-octave note, namely frequency x3/2 (G) is indeed the fifth note of this scale, as 
anticipated above.  

However, this is not the scale which Western music has adopted  at any period in history. 
The two notes which we invented to fill the over-large gap in our first attempt at a scale do 
not exist in modern (or classical) music. These are the second and seventh notes of our scale, 
lying respectively mid-way between C-sharp and D and mid-way between A-sharp and B.  

Memo: Find some way of trying this scale out. Can t be done on an instrument (unless, say, 
two guitars were used, with one tuned down to provide the two new notes - but I don t know 
how I d tune-in the new notes to the required frequency??). The obvious thing is to use a PC 
which can supply a tone specified directly by frequency. Try it!!  

There are at least four reasons why such a scale was not adopted historically; (a)It does not 
sound right  is this true? Have we just become conditioned to an alternative? (b)The classical 
mind would have abhorred the nasty irrational ratios I have used for the two new notes. They 
liked nice simple ratios. (c)There seems no reason to have left out poor old frequency 5/4 (E) 
in our scale. If anything 5/4 is simpler than 5/3 or 6/5, so why does it get ditched? No, the 
classicals insisted on keeping it, thus mucking up our nice simple proposal. (d)A much more 
subtle reason to do with the way notes in one octave relate to those in higher, and lower, 
octaves 

 

and the origin of those 12 semitones .  

The Chromatic Scale of 12 Semitones  

I m sorry about this, but I just cannot avoid it. You see, it all goes back to those Pythagoreans. 
They started off trying to devise their musical scale pretty much as described above. That is, 
they discovered the octave note (frequency x2) and then the perfect fifth , i.e. freqency x3/2. 
But they didn t continue with this approach. Instead they had  to mathematicians  a more 
elegant method. Their reasoning was (or at least we may surmise) that multiplying any 
number of factors of 2 is very useful in generating lots of harmonious notes, but using just 
factors of 2 gets us nowhere in terms of dividing up our octave. Using our 3/2 ratio just once 
gives us just one more note in our octave. But what happens if we use it twice? Well, we now 
have just two-thirds of two-thirds of our string vibrating, and the frequency is clearly 9/4 
which is greater than 2, and hence lies outside our octave. Shame! But wait a minute. We can 
also shift things up and down by any number of factors of two and still guarantee to obtain 
notes which are harmonious. So, we just divide our 9/4 by 2 to give 9/8.   

This is a more elegant, and more systematic approach. In terms of where your finger is on the 
string it means that we are going to generate all our notes from the following operations: 
where-ever your finger is currently positioned, either, (a)move it one-third along the 
remaining length of string, or, (b)move it so as to double the length of vibrating string. 
Clearly if the first operation is carried out r times, and the second n times, (the order is 
irrelevant) then starting with an open string produces a note of frequency,       

nr

2

1

2

3

  



Also, it is clear that, for a given value of r there is exactly one value of n which causes this 
new note to lie within our octave, i.e. having a frequency between 1 and 2 (in multiples of the 
open string frequency). This particular value of n can be written nr. The values of nr for each r 
are as follows,  

Third Attempt at a Scale  The Pythagorean Scale 
r nr Exact Frequency ( nrr 2/3 ) Decimal Approx

 
Adjacent Ratio 

First Octave 
0 0 1 1 - 
7 4 2187 / 2048 1.067871094 1.067871094 
2 1 9 / 8 1.125 1.053497942 
9 5 19,683 / 16,384 1.20135498 1.067871094 
4 2 81 / 64 1.265625 1.053497942 

11 6 177,147 / 131,072 1.351524353 1.067871094 
6 3 729 / 512 1.423828125 1.053497942 
1 0 3 / 2 1.5 1.053497942 
8 4 6,561 / 4,096 1.601806641 1.067871094 
3 1 27 / 16 1.6875 1.053497942 

10 5 59,049 / 32,768 1.802032471 1.067871094 
5 2 243 / 128 1.8984375 1.053497942 
0 1 2 2 1.053497942 

Second Octave (frequencies divided by 2) 
12 7 531,441 / 524,288 1.013643265 - 
19 11 1,162,261,467 / 1,073,741,824 1.0824403 1.067871094 
14 8 4,782,969 / 4,194,304 1.1403487  
21 12 10,460,353,203/8,589,934,592 1.2177454  
16 9    
23 13    
18 10    
13 7 1,594,323 / 1,048,576 1.5204649  
20 11    
15 8    
22 12    
17 9    

Third Octave (frequency divided by 4) 
24 14  1.0274727  

 

The Table covers all values of r from 0 through 24 (just once each), although the entries have 
been ordered by increasing frequency. This covers two whole octaves and the start of a third. 
The frequencies in the second octave have been divided by 2 for ease of comparison with the 
first.   

A nice thing about this Pythagorean scale is that the frequency ratio (=logarithmic spacing) 
between adjacent notes (semitones) is reasonably uniform, so we have achieved our objective 
of splitting the octave into notes at fairly even spacings. Only two ratios occur: either 37 / 211 

= 1.067871094 or 28 / 35 = 1.053497942 and these are quite similar. Defining a semitone as 
the spacing between adjacent notes in our scale, these two ratios are the value of the semitone, 
depending upon position in the scale. Incidentally, there are 5 of the larger intervals and 7 of 
the smaller intervals in the octave, so the ratio between the tonic and its octave note is 
therefore [37 / 211]5.[ 28 / 35]7 = 2 , as indeed it must be.  

The shortcoming of the Pythagorean scale is, however, immediately apparent. The second 
octave should start at a frequency of exactly 2 (or 1 after re-scaling by 2, as in our Table). It is 



very close! The start of the second octave misses 1 by just 1.364 %, that is by a factor of 312 

/ 219 = 1.0136433. It is this near numerical coincidence that gives the Pythagorean approach 
credibility. Nevertheless, it is flawed. The gap between the true octave and the Pythagorean 
close miss is known as the Pythagorean comma and the associated note, i.e. that at a 

frequency of 312 / 219 times the octave note, is known as the wolf note . Does it sound that 
bad?  

The Pythagorean scale does two things; it shows why it may be natural to split the octave into 
12 semitones. This is just how many notes there are within one octave which can be made 
from the operations stated above, i.e. from the formula 3r/2(r+n). Or rather, it would be if it 
were not for the awkward fact that, with r = 12, n = 7, we get another new note in our original 
octave, a mere 1.0136433 times greater in frequency than our tonic note. We have no need for 
this embarrassing note, virtually indistinguishable from the tonic. Indeed the whole of the 
original 12 notes (semitones) are reproduced for r in the range 12 to 23  except with an 
error of x1.0136433 (=312 / 219). The pragmatic way forward is just to ignore the unwelcome 

repetition. We call it a day after we have defined the first set of twelve notes. For our present 
purposes we are content that we have found a reasonable motivation for having 12 semitones 
per octave.  

Finally in regard to the Pythagorean scale we note that 7 of the 12 notes are distinguished in 
having the small adjacent frequency ratio. Curiously these same 7 notes also have the 
simplest frequencies, i.e. the frequencies defined by ratios of the smallest integers (shown in 
bold in the Table). Perhaps this is the first inkling that musical scales may be composed most 
harmonically out of a sub-set of 7 of the possible 12 semitones? Also, the spacing of these 
notes, in terms of semitones, is 2, 2, 2, 1, 2, 2, 1, which is tantalisingly similar to the spacing 
of notes in the major Western chromatic scales. The later are actually 2, 2, 1, 2, 2, 2, 1. If 
adopted, the former spacing would give the scale of C as C, D, E, F#, G, A, B, C, which most 
definitely does not sound right. There is no Western chromatic scale with these notes. 
Alternatively, if we interpret the tonic of the Pythagorean scale as F, then the note sequence is 
F, G, A, B, C, D, E, F  just the notes of C-major (or A-minor), but with the wrong tonic, and 
which consequently doesn t sound right either. The actual scale of F is F, G, A, A#, C, D, E, 
F.   

The Equal Tempered Scale  

The equal tempered scale is that in most common use in Western music. This has been the 
case since around the time of J.S.Bach. It is usual to attribute the widespread introduction of 
the scale to Bach, if not its actual invention. However, this is contentious. The scale is simple 
to define. Rather than agonise further about perfect harmonic integer ratios, it is simply taken 
as a given that there will be 12 notes within the octave and that we wish to have them equally 
spaced [in log(frequency)]. Since an octave is a factor of 2 on frequency, it follows 

immediately that all 12 semitones will be simply a factor of 0594631.12 12
1

 above the 
last. This resulting equal tempered semitone notes are very close to those of the Pythagorean 
scale, 



 
Note Pythagorean Equal Tempered

 
Difference (%)

 
Tonic 1 1 0.00 
1 1.0679 1.0595 0.79 
2 1.125 1.1225 0.23 
3 1.2014 1.1892 1.01 
4 1.2656 1.2599 0.45 
5 1.3515 1.3348 1.23 
6 1.4238 1.4142 0.68 
7 1.5 1.4983 0.11 
8 1.6018 1.5874 0.90 
9 1.6875 1.6818 0.34 
10 1.8020 1.7818 1.12 
11 1.8984 1.8877 0.56 
12 (octave)

 

2 2 0.00  

The equal tempered scale was devised for very practical reasons. It is self-similar. That is, if 
we shift our base note (or tonic) up by one semitone (or any number of semitones, for that 
matter) the shifted scale still has exactly the same frequency ratios to the new base note.   

In other words, if we start with a base note of frequency f, the equal tempered scale will 

consist of the notes f, 12
1

2 f, 12
2

2 f, 12
3

2 f, .Now shifting to a new base with f2f 12
p

the 

scale is clearly just f2 12
p

, f2 12
1p

, f2 12
2p

, f2 12
3p

.= f , f2 12
1

, f2 12
2

, f2 12
3

, . 
which is just the same as the original scale with f replaced by f .   

This self-similarity is not achieved by any other scale  because it is a consequence of having 
perfectly uniform semitone intervals, and there is clearly only the one such scale  the equal 
tempered scale. So, the very important corollary is that with all other scales many instruments 
would only be able to play in one key without complicated re-tuning. Indeed, a fretted string 
instrument, like the guitar, would require, even for a fixed key, fret spacings different for the 
different strings. The frets could no longer simply span the whole fret-board.   

With the equal tempered scale, however, the fret spacing on all strings becomes simply,       

12
  

21
n

x

  

where x is the fraction of the length of the string down which the nth fret is positioned.   

Just Intonation Scales  

Just Intonation scales are any scales obtained from rational factors (that is, integer ratios) of 
the tonic frequency. The equal tempered scale is therefore not

 

a just intonation scale, 

because of the irrational factor of 12
1

2  which defines the semitone intervals. The Pythagorean 
scale is, strictly speaking, a just intonation scale. However, this is not what is really meant 
in practice by just intonation . The term is used to mean a scale devised using small integers 
in the ratios (in stark contrast to the very large integers in the Pythagorean scale), but 
consistent with achieving a scale which is close to the Pythagorean or equal tempered scales. 
The rationale behind the use of simple ratios, i.e. small integers, is that it is more likely to 
produce harmony when playing multiple notes (chords) and less likely to produce audible 
beats. In any case, the aim is one of which the classicals would have thoroughly approved.   



Such just intonation scales are not unique. However, going back to our first attempt at a scale, 
we recall that there was a central core of ratios that seemed simplest and most desirable, 
namely 6:5, 5:4, 4:3, 3:2, and 5:3. All the most common versions of just intonation scales 
deploy these particular ratios. The greatest number of variants is for the first note after the 
tonic, i.e. the first semitone. The various suggestions are,   

21 / 20   = 1.05   
256 / 243  = 1.0534979 (=28/35)  
16 / 15   = 1.0666666 (diatonic semitone)  
2187 / 2048 = 1.0678711 (=37/211, the Pythagorean semitone) 

and these are to be compared with the equal tempered interval of 0594631.12 12
1

.   

An example of a just intonation scale is

  

Note Name Just Intonation Equal Tempered

 

Difference (%)

 

Modern Name

 

Tonic unison 1 1 0.00 C 
1 Semitone 21:20 = 1.05 1.0595 -0.90 C# 
2 Major second

 

9:8 = 1.125 1.1225 0.22 D 
3 Minor third 6:5 = 1.2 1.1892 0.91 D# 
4 Major third 5:4 = 1.25 1.2599 -0.79 E 
5 Perfect fourth

 

4:3 = 1.333333 1.3348 -0.11 F 
6 Tritone* 7:5 = 1.4 1.4142 -1.00 F# 
7 Perfect fifth 3:2 = 1.5 1.4983 0.11 G 
8 Minor sixth 8:5 = 1.6 1.5874 0.79 G# 
9 Major sixth 5:3 = 1.666666 1.6818 -0.90 A 
10 Minor seventh 9:5 =1.8 1.7818 1.02 A# 
11 Major 

seventh 
17:9 = 1.88888 

OR 15:8 = 1.875

 

1.8877 0.06 
-0.67 

B 

12 (octave)

 

octave 2:1 2 0.00 C 
*so-called because it is 6 semitones = 3 tones. Also known as the Devil s Interval, and reputably 
beloved of Black Sabbath.  

Hence, this just intonation scale differs from the equal tempered scale by around the same 
amount as the Pythagorean scale, namely by around 1% or less. There is a tendency amongst 
musical purists to regard the just intonation scales as being the best. The equal tempered scale 
is regarded by some as being essentially out of tune and is tolerated only because of its 
practical convenience.  

The difficulty with tuning a guitar to this just intonation scale can be illustrated as follows. 
The guitar is usually tuned as follows,    

E A D G B E (Open Strings)   
F    C F (First Fret)    

B E A   (Second Fret)   
G C F  D G (Third Fret)  

Now, for a guitar with frets which are continuous across the neck of the instrument, this is 
only possible if the interval between the notes on the different strings are all the same. Thus, 
we require the following equalities in terms of interval,    

EF = BC   (one semitone = one fret)   
AB = DE = GA   (two semitones = two frets)   
EG = AC = DF = BD  (three semitones = three frets)  



These equalities are guaranteed in the equal tempered scale. For the above just intonation 
scale we have,    

EF = BC = 1.06666666   
AB = DE = 1.125, but GA = 1.111111   
EG = AC = DF = 1.2 but BD = 1.185185  

Consequently, it is impossible to tune a conventional guitar to this just intonation scale. You 
would need either a fretless guitar, and the use of subtly different finger positioning on the 
different strings, or a guitar with different frets for the different strings. In the latter case, you 
would need a different guitar to play in different keys. The virtual necessity of adopting the 
equal tempered scale in practice is apparent.   

OK, But What About the Different 8 Note Scales? And Why Are They So Weird?  

Western music, be it classical, folk, blues, pop, rock or jazz is all based on certain sub-sets of 
the 12 note diatonic scale. These are the 8 notes shown as bold in the above Table, and named 
major or perfect . In terms of semitones, the intervals between successive notes of this 8-

note scale are 2, 2, 1, 2, 2, 2, 1. This is reflected by the black notes on a piano, which occur in 
alternating groups of two and three.  

In the scale of C, the 8 notes obtained in the above manner are called D, E, F, G, A, B, C. 
This is the diatonic scale (i.e. the white notes on a piano).   

All major scales are obtained from the same semitone sequence, i.e. 2, 2, 1, 2, 2, 2, 1, starting 
from the tonic note. Hence

  

8-Note Major Scales (read downwards from tonic at the top) 
C C# D D# E F F# G G# A A# B 
D D# E F F# G G# A A# B C C# 
E F F# G G# A A# B C C# D D# 
F F# G G# A A# B C C# D D# E 
G G# A A# B C C# D D# E F F# 
A A# B C C# D D# E F F# G G# 
B C C# D D# E F F# G G# A A# 
C C# D D# E F F# G G# A A# B 
NB: C#= Dflat; D#=Eflat; F#=Gflat; G#=Aflat; A#=Bflat  

So, what are the minor scales? These are generated from the same semitone intervals, but 
with the last two notes shifted to the beginning. Thus, the semi-tone sequence is 2, 1, 2, 2, 1, 
2, 2. Consequently, for each major scale there is a minor scale (the relative minor) which 
consists of exactly the same notes  but with the tonic (the starting note) shifted down by two 
notes (3 semi-tones). Thus, the relative minor of C-major is A-minor, and the relative minor 
of E-major is C#-minor, etc.   

If the major scale has the same notes as the relative minor scale, why do they sound 
different? Because the tonic, the starting note, is different, and because the accentuation 
within the tune reinforces the tonic (which is said to give a strong tonal centre). Also, the 
chord progressions in the major and relative minor keys are different. So it ain t just the notes 
which make the key.  

So what about chords? That will have to wait for another day.   
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