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1. Motivation and Answer 

You may suspect that the answer to the question posed in the title is no , since 
otherwise you would have heard of such a thing. That is indeed the answer, but why? 
It is not so self evident as it may at first appear. 

The motivation for considering this question (amongst possibly many others) is that it 
would provide a potential means of overcoming geometrical frustration in protein 
folding. If a strand of protein were to fold the wrong way and find itself on the 
wrong side of some group further down the molecule, it could tunnel its way 

through to the correct side (driven, one supposes, by an energy gradient). However, 
this cannot happen, as we demonstrate here. 

2. The Lazy Response 

Ask any chemist this question and (s)he will reply that tunnelling probability reduces 
exponentially with mass. Hence, whilst an electron can tunnel readily, the far greater 
mass of a molecule (or, indeed, just a single nucleus) effectively eliminates the 
possibility of tunnelling.  

It turns out that this answer is basically correct, but one has to work a little harder to 
make it fully convincing. The reason is that there is an obvious objection to this 
qualitative argument. Physically one could claim that it is only necessary for the 
electrons comprising the covalent bond to tunnel. If so, it is only the electron mass 
which enters the tunnelling expression, not the atomic or molecular masses.  

Consider a molecule consisting of two groups, A and B, which are joined by a single 
covalent bond. Similarly a second molecule consists of C and D bound by a single 
covalent bond. Provided that the geometry of the molecules A-B and C-D are 
compatible, the only obstacles to their passing through each other at the position of 
these single bonds are the bonds themselves. It is thus only necessary for the electron 
clouds which comprise the bonds to be able to pass through each other to accomplish 
the task for the molecules as a whole. However, this will be true only so long as the 
size of the atoms and the length of the bonds does not cause the atoms to collide.  

3. Is Pass-Through Geometrically Possible? 

It is not clear that there is necessarily any unavoidable geometrical jamming , at least 
for suitably chosen molecules. Consider an alkane for example. Every carbon atom 
has four single bonds which are roughly tetrahedrally disposed. The C-C bond length 
is 1.54 Angstrom. The nominal diameter of a carbon atom is 1.34 Angstrom. 
Consequently if we imagine two covalent bonds attempting to pass through each other 
at right angles there is an apparent conflict, as illustrated below in Figure 1. The 
distance between the centres of unbonded carbon atoms is 1.54 / 2 = 1.09 Angstrom. 
This is smaller than the atomic size and hence the carbon atoms are in conflict and 
will apparently prevent molecular tunnelling.  

However, this is too simplistic. For a start, the atoms are not hard spheres with a 
clearly defined diameter. A degree of overlap of electron clouds may be possible, 
depending upon the energies involved.  



Figure 1: Apparent Geometrical Conflict Between Carbon Atoms  

Perhaps more importantly the atoms will be severely distorted from their shape when 
isolated by the tetrahedrally disposed sigma bonds. Each carbon atom has four 
electrons occupying sp3 hybrid orbitals. The greatest density of the electron cloud 
which comprises each sigma bond lies between the nuclei which are thus bonded. 
Consequently, the above picture is very misleading.  

The three other bonds on each carbon atom will drag a large proportion of the 
associated electron cloud away from the region of the bond in question in Figure 1. 
This will significantly shrink the effective size of the atom. Note that the bonds shown 
in Figure 1 do not count in this respect, since these are the electrons whose tunnelling 
we are to investigate (and hence overlap of these electron clouds is to be addressed 
directly). The only electrons not involved in bonding are the two 1S inner shell 
electrons. But the size of this orbital will be very small indeed, perhaps one-sixth of a 
Bohr radius (due to the carbon nucleus having charge 6e), i.e., an inner core 
diameter of ~0.2 Angstrom.  

Whilst these observations do not prove that molecular tunnelling is geometrically 
possible, they illustrate that geometrical frustration cannot be simply asserted. Hence 
geometry alone does not provide an impossibility argument against molecular 
tunnelling.  

For the purposes of this note we shall assume tunnelling is not prevented by 
geometry. What remains is to investigate whether the quantum tunnelling itself is 
possible.  

4. Archetypal Tunnelling: The1D Potential Barrier 

The archetypal example of quantum tunnelling is to consider a free particle with 
kinetic energy E which hits a square potential barrier of height V and width a. If 

EV  then in classical physics the particle could never penetrate the barrier. In 
quantum mechanics, however, it may do so. It is an elementary problem, solved in 
standard texts, to show that the probability that the particle penetrates the barrier is,     
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Equ.(1) holds only in the limit 1a , for which the probability of barrier penetration 
is small. For a barrier which is not a square potential, we can estimate the barrier 
penetration probability by using an average decay rate, , given by,      
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5. Implications for Electrons and Atoms 

In (3) or (4), the mass, m, is the mass of the projectile which is, or is not, tunnelling 
through the barrier. Let us suppose for a moment that this is an electron, and hence of 
mass 9.1 x 10-31 kg. Suppose the barrier height is ~1 eV greater than the particle s 
kinetic energy and suppose the barrier width is ~1 Angstrom. In terms of order of 
magnitude we can approximate the tunnelling probability by simply a2exp . This 

evaluates to ~ 1e , i.e., a very large probability.  

Now what if we assume the same potential barrier and impact kinetic energy, but take 
the effective particle mass to be (say) the mass of a pair of carbon atoms, i.e., m ~      

4 x 10-26 kg. We now get a tunnelling probability of order 93215 10~e . Clearly 
tunnelling just will not happen with this effective mass. This, of course, is what 
chemists mean when they talk about the exponential mass dependence of quantum 
tunnelling .  

Just how small would EV  need to be before tunnelling might feasibly occur if the 
effective mass were that of two carbon atoms? With 1.0EV  eV we get a 
tunnelling probability of ~10-30, still too small to be significant, and with 01.0EV 
eV we get a tunnelling probability of ~10-9. If coupled with a large frequency of 
attempts at penetration, this might just be significant. With 1EV  meV we get a 
tunnelling probability of ~10-3, which is now quite clearly significant.  

Thus, if the effective mass is indeed that of the carbon atoms then tunnelling will not 
occur if the potential barrier exceeds the kinetic energy by more than a few meV. 

On the other hand, if the effective mass is that of the electrons then a potential barrier 
which exceeds the kinetic energy by the order of eV can easily be penetrated.  

Which is the relevant case? This is the question which is not so trivial to answer. 

6. The Born-Oppenheimer Approximation 

Put the question of two interacting molecules aside for a moment. Consider instead 
how we calculate a molecular orbital between two atoms. Let s simplify the problem 
to that of just two electrons, which comprise the covalent bond in question, plus the 
two nuclei which are thus bound. The coordinates of these four particles are written 

BA rrrr ,,, 21  and the Schrodinger equation is,      (5) 
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where V accounts for all the pair-wise Coulomb interactions between the two 



electrons and the two nuclei. (5) is already an approximation since we have ignored 
the other electrons around the two atoms, and this implies that the potential function 
V in (5) must be some approximate expression accounting for the shielding of the 
nuclei by the other electrons. The Born-Oppenheimer approximation appeals to the 
kinetic energy of the nuclei being small compared with that of the electrons. The first 
two operators on the LHS of (5) can thus be dropped to yield an equation for the 
electrons only, 
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The coordinate of nucleus B has been dropped since this (or, better, the centre of 
mass) can be taken as the origin. The (relative) position of nucleus A is essential in 
(6) since the proximity of the nuclei is crucial to the interaction energy between the 
electrons. However, in (6) Ar  appears as a constant parameter (which is yet to be 
found). Consequently, the energy of the pair of electrons, eE , in (6) is dependent upon 

Ar . The eigenfunctions Ae rrr ,, 21  are therefore also dependent upon Ar .  

Implicit in (6) is that the internal wavefunction of the (two atom) molecule can be 
written,     

AnAe rrrr ,, 21
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We refer to (7) as the internal wavefunction because the molecule as a whole is 
assumed stationary. Hence the wavefunction corresponding to its centre-of-mass 
coordinate, R , is not explicitly shown. If it were, (7) would have an extra factor R . 
Substituting (7) into (5) and using (6) gives, 
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where the reduced mass is 
BA

BA
A MM

MM
. The next step in the Born-Oppenheimer 

approximation is to assume that the dependence of the electrons wavefunction, 
Ae rrr ,, 21 , on Ar  is modest so that we can approximate,    
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Physically this depends upon the amplitude of the nuclear motions being small 
compared with their equilibrium distance. This will be true unless very high 
vibrational modes, or rotational modes, are excited. Consequently the electron 
wavefunction factors out of (8) to leave a wavefunction for the nuclei alone, 
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Note that since we assuming that the electrons are in a bound state, the total electron 
energy, eE  in (6) is a negative quantity. Hence the effect of this term in (10) is to act 
as an attractive potential which in turn binds the two nuclei  thus creating the 
chemical bond. It follows that the total energy, E, is also negative (or the atoms would 
not be bound). Note that it is clear from (5) that E is the total internal energy of all 
four particles comprising the molecule, the two electrons and the two nuclei, since (5) 



includes all the internal potential energies and all four kinetic energy terms. The 
binding energy, i.e., the energy required to pull the two atoms apart to leave a pair of 

neutral atoms, is eEE , where eE  is the expectation value of Ae rE  for the 

eigen-state, An r , in question.  

7. The Interaction of Two Molecules 

Now we come to the nub of the matter. Consider two molecules: the first A-B 
consisting of two groups, A and B, joined by a single covalent bond, and the second 
C-D with a similar single covalent bond. Assuming no geometrical frustration, can 
these two covalent bonds pass through each other? The bonds consist, of course, of 
dispersed clouds of electrons. The only thing to prevent their passing, ghost-like, 
through each other is their mutual electrostatic repulsion, i.e., the energy barrier 
between the two electron clouds.  

The two electrons comprising the bond A-B are assigned coordinates 21, rr , whereas 
those on the other molecule, comprising the bond C-D, are at 43 , rr . The distance apart 
of the nuclei on either side of the A-B bond is Ar , and the distance apart of the nuclei 
on either side of the C-D bond is Cr . Finally, the distance apart of the centres of mass 

of the two molecules is R . Hence our eight particles (four electrons plus four nuclei) 
are described by seven vector coordinates (the centre of mass of the two molecules 
taken as a whole being ignored, i.e., stationary). The Schrodinger equation for this 
eight-particle system is thus, 
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The wavefunction in (11) depends upon all coordinates, Rrrrrrr CA ,,,,,, 43,21 . The 

terms A  and C  are the reduced masses of the nuclei on either side of the A-B bond, 
and on either side of the C-D bond, respectively. Similarly,  is the reduced mass of 
the two molecules.  

The term ABV  is the intra-molecular potential energy of molecule A-B. (To be more 
exact, it is that part of the intra-molecular energy which relates to the pair of bonding 
electrons plus the two bound nuclei. The rest of the groups A and B are not counted in 
this energy inventory). Similarly, CDV is the intra-molecular potential energy of 
molecule C-D. The last term on the LHS of (11), intV , is the interaction potential 
between the two molecules  assuming that only the four electrons and four nuclei 
involved in the two bonds contribute.  

The energy, E, in (11) is the sum of all the potential energies due to all pair-wise 
interactions between the eight involved particles, plus the eight kinetic energy terms. 

Let us now suppose that the wavefunction in (11) can be considered as the product of 
the wavefunctions for each molecule times a function which relates to their relative 
bulk motion in terms of coordinate R , thus, 
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Equ.(11) therefore becomes, 
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Here, ABE  is the total energy of the four particles involved in the A-B bond, and is 
therefore negative, as is CDE . They are the values of E in Equ.(10) and hence are the 
energies required both to break the molecular bond and also to ionise the atoms and 
release the electrons.  

Note that the molecular wavefunctions AB  and CD  factor out of Equ.(13) to leave 

an equation in R  alone. However, there is a problem: the interaction potential in 
(13) still contains dependence upon the coordinates CA rrrrrr ,,,,, 43,21 . What has 

happened here is that we have effectively assumed that the molecular wavefunctions, 
AB  and CD , are unchanged by the inter-molecular interaction, intV . This is 

equivalent to employing first order perturbation theory, in which case the effective 
interaction can be replaced by its expectation value for the molecular states in 
question. Hence we must make the replacement, 
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Explicitly this average interaction energy is,               (15) 
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 retains a dependence upon the separation of the two molecules, 

R . So finally (13) becomes simply, 
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where,   CDAB EEEE
~

 

The energy E
~

 is the total energy, potential plus kinetic, of the eight involved particles 
minus the total energy internal to each molecule. It is thus the total potential plus 
kinetic energy associated with the pair of molecules if they are regarded as 
structureless point particles. If the molecules could bind together to form a composite 
molecule then E

~
 could be negative. However, we are assuming that no bound state of 

the two molecules is relevant here. Rather, the two molecules collide with some 
significant kinetic energy and the total energy term E

~
 is positive. Since the 

interaction is negligible at large distances, the energy E
~

 can be equated with the total 
incoming kinetic energy of the pair of molecules treated as point masses. 

The molecules are envisaged as attempting to pass through each other, the nuclei not 
coming into contact but the molecules crossing over at roughly the middle of their 
covalent bonds. It is therefore the two electron clouds comprising these bonds which 
come into the most intimate contact. The interaction energy, (15), will therefore be 
dominated by the electrostatic repulsion of these electron clouds, and hence will be a 
positive energy, 0

~
intV . 

Equ.(16) is therefore of the form where quantum tunnelling might be considered, i.e., 
it describes an incoming particle with positive energy hitting a positive potential 
energy barrier. If int

~~
VE  then it is assured that the probability of penetration will be 



high (in fact more probable than not). However, the situation, as we shall see below, 
is that int

~~
VE  and the probability of tunnelling is of order a2exp  where,     
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(see §4). The function RVint
~

, including its effective width , a, can in principle be 
calculated from (15).  

The important thing to note about (17) is that it contains the reduced nuclear mass, not 
the electron mass. This is a consequence of the fact that the tunnelling equation is (16) 
and this is the equation which defines the bulk relative motion of the two molecules. 
This is the key result. It is now fairly obvious from the general considerations of §5 
that tunnelling of the two molecules is not credible. For completeness the argment is 
laid out below. 

8. Implications for Molecular Tunnelling 

It would be quite feasible to estimate the interaction potential, int
~
V , by assuming it to 

be dominated by the electron-electron Coulomb terms between the molecules, thus, 
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With the aid of some approximate solution for the 3sp molecular orbitals, the 

interaction energy int
~
V  could then be found by direct evaluation of the integrals in 

(15). However, it really is not worth taking such trouble, as will become clear from 
the following rough order-of-magnitude estimate. 

Let us idealise the 3sp molecular orbitals as being significant only between the 

bonded nuclei. More specifically we shall approximate the electron density, 
2

,eAB , 

to be uniform within a sphere centred on the mid-point of the bond and of diameter a 
but zero outside this sphere. Note that this diameter also acts as an effective width of 
the potential int

~
V  since the interaction energy will fall off as the overlap between the 

two electron clouds diminishes. It is elementary to determine the electrical potential 
due to a uniform sphere of charge. Since the total charge per cloud is 2e (because each 
bond consists of two electrons), this is, 
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This solution has continuous  and continuous electric field 
r

 at 
2

a
r , as it 

must. The interaction energy between the two electron clouds is greatest when the two 
spheres are exactly superimposed (i.e., when 0R ). So we have,     
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Rather than evaluating int
~
V  as a function of the distance between the molecules, R, 

and then calculating the integral in (17), we merely approximate a  as the peak value 
of  derived from (20) times the diameter of the spheres of charge, a.  

If we take a to be the bond length (1.54 Angstrom), which seems most appropriate, 

we get max
int

~
V 90 eV. This is a very large energy by the standards of atomic, or 

molecular, electron states. Body temperature (310 K) corresponds to kT of 0.027 eV, 
which will therefore be the typical magnitude of the kinetic energies of the molecules 
per degree of freedom. Even accounting for several involved degrees of freedom, and 
some reasonable number of standard deviations from the mean of the Maxwell 
distribution, it is clear that the effective E

~
will be less than 1 eV.  

Consequently the value of a  is of order 550~

~
2

~
max

intVa
a . Here we have taken 

the reduced mass of the two molecules as one-quarter the mass of a single carbon 
atom (1/4 x 2 x 10-26 kg). Since the carbon atoms on either side of the two bonds will 
be required to drag the rest of the molecular groups A, B, C and D along with them, 
this may be rather an under-estimate. The tunnelling probability is therefore of the 
order 1100exp2exp a  which is effectively zero. 

If we choose an effective charge diameter, a, which is only half as big, then a

 

reduces by a factor 2/1  and the tunnelling probability becomes 780exp , still 
effectively zero. 

It is clear that any reasonable temperature consistent with the molecules not being 
dissociated (and, indeed, the atoms not being ionized as well) cannot raise the 

effective E
~

 to anywhere near max
int

~
V .  

Whilst covalent bonds between atoms other than carbon atoms will differ in detail, it 
is clear that any such differences cannot challenge the fact that the potential energy of 
superimposed electron clouds of the two covalent bonds will be orders of magnitude 
larger than available thermal energies.  

We conclude that the quantum tunnelling of two covalently bonded molecules 
through each other is not possible. 

   



This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

