
 

This brief note explains why the Michel-Levy colour chart for birefringence looks like this... 

 

 



Theory of Levy Colour Chart for Birefringent Materials Between Crossed Polars 

 

• Birefringence = 
12
nn − , the difference of the refractive indices for the two rays 

• Frequency of rays is unchanged in material, πω 2/=f , ω  = angular frequency 

• Wavenumber of rays changes to kn
1
 and kn

2
 where 

λ

π2
=k  is the wavenumber 

in vacuum and λ  is the wavelength in vacuum.  

• So the wavelengths are shorter in the material, 
1

/ nλ  and 
2

/ nλ  

• Wave amplitude in vacuum proportional to { }tkxi ω−exp . 

• Ray amplitudes in material proportional to { }tkxni ω−
1

exp  and { }tkxni ω−
2

exp  

• The phase of the wave in vacuum would be greater by an amount kx  at a distance 

of x  (at the same time) 

• So a phase difference can be converted to an equivalent distance in vacuum by 

diving by k  

• The two rays at the same time and at the same position in the material differ in 

phase by ( )kxnn
12

− .  

• This is equivalent to a distance in vacuum of ( )xnn
12

− . 

• Hence the retardation r = ( )xnn
12

−  is the distance in vacuum which would 

cause the same phase difference as the two rays experience after passing a real 

distance of x  through the material. 

• Lines on the Levy chart are x (thickness) up the y-axis versus r, which therefore 

has a slope of ( )
12

/1 nn −  

• Rationalisation of the Fringe Colours (see Figure, next page):- 

• Peaks in colours occur when ( )λ5.0+= nr , for n = 0, 1, 2,… (see last page for 

why) so these colours are expected to be found in the following r-ranges, 
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from, 

nm 

λ  

to,  

nm 

 

r  

n = 0 

nm 

r 

n = 1 

nm 

r 

n = 2 

nm 

r 

n = 3 

nm 

violet 1 380 450 190 225 570 675 950 1125 1330 1575 

blue 2 450 495 225 247.5 675 742.5 1125 1237.5 1575 1732.5 

green 3 495 570 247.5 285 742.5 855 1237.5 1425 1732.5 1995 

yellow 4 570 590 285 295 855 885 1425 1475 1995 2065 

orange 5 590 620 295 310 885 930 1475 1550 2065 2170 

red 6 620 750 310 375 930 1125 1550 1875 2170 2625 

 

� This gives a reasonable representation of the chart (see diagram on next page) 

� It is white below 190 nm 

� It blurs out due to overlaps at fourth order and beyond 

� The reason why there are no narrow violet/blue/green bands in the first order 

range 190-285 nm is explained on the last page
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Why are the peaks at ( )λ5.0+= nr  not at λnr = ? 

This is because of the crossed-polars. 

 

Hence, if the rays are in-phase, i.e., if λnr =  for n = 0, 1, 2,… then the waves 

destructively interfere because their projections onto the plane of the second polariser 

are in opposite directions. 

Conversely, if the rays are 180
o

 out-of-phase, i.e., if ( )λ5.0+= nr  for n = 0, 1, 2,… 

then the waves constructively interfere because ray 2 is now pointing in the opposite 

direction and the projections of the two rays onto the plane of the second polariser are 

now in the same direction, thus....  
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How does this work algebraically? 

The ray amplitudes in the material are proportional to { }tkxni ω−
1

exp  and 

{ }tkxni ω−
2

exp  respectively. The two waves combine with a relative minus sign so the 

total amplitude is, 

{ } { }tkxnitkxni ωω −−−
12

expexp  

But a wave intensity is proportional to the absolute square of its amplitude, which is, 
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The peaks in θ
2

sin  occur at πθ )5.0( += n  for n = 0, 1, 2…  

So the peaks in a given colour, of wavelength λ, occur at, 
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  i.e., for ( ) ( )λ5.0
12

+=−= nxnnr  

How could the colour chart be calculated more accurately? 

Why does the character of the colours change order-by-order? 

The spectrum (the intensity of light at wavelength λ ) is given as derived above by  

( ) ( )
λ

π

λ

π rxnn
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nn 2122122
sinsin

2
sin =

−

=

−

. This is plotted against λ  below for the 

case of the green lines at orders 2, 3 and 4, namely at r = 773, 1287 and 1803 nm, all 

of which correspond to a peak at 515=λ nm (green), as can be checked by dividing r 

by 1.5, 2.5 and 3.5 respectively. Accordingly the spectrum shown below reaches a 

peak at 515=λ  in all three cases. However the spectra are otherwise very different.  

• The second order spectrum has a large contribution from around the green 

wavelength only – corresponding to quite a pure green line at second order; 

• The third order spectrum has a substantial amount of violet and red as well as 

green, corresponding to a less pure green at third order; 

• The fourth order spectrum has as much violet and red as green, corresponding to a 

particularly washed-out green at fourth order. 



Spectra at Second, Third and Fourth Order Green Lines
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Exactly the same method for the first order where a green line might have been 

expected, i.e., for r = 0.5 * 515 = 257 nm, produces the almost flat spectrum given 

below. This explains why, in the first order, where green (or violet or blue) lines 

might have been expected, at 190-285 nm, there are none - but rather just white. 

Spectrum at First Order Green Line (n=0)
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