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1. Introduction 
Imagine that a pencil has been successfully balanced on its tip in the vertical position. 
Imagine also that it is entirely free from disturbances. Thus, all vibrations are 
rigorously excluded from the table on which the pencil stands. Likewise, not the 
slightest breath of air is permitted to disturb it, not even the lowest amplitude sound 
wave. Imagine also that the pencil s tip is sharp and that an infinitesimal disturbance 
would unbalance it. How long will the pencil remain upright? From the point of view 
of classical physics this problem is indeterminate. The attempt to play off the absence 
of disturbance against the pencil s infinite instability merely results in a comparison 
of one unattainable precondition against another. In the absence of additional 
information, it is not possible to decide which idealised precondition is the more 
imperfect, and hence it is not possible to decide whether the pencil will fall. In other 
words, the question is ill-posed. Curiously, however, this conclusion applies only 
when the question is considered from the perspective of classical physics.  

In contrast, when interpreted as a quantum mechanical question, the question has a 
well defined answer. The pencil falls. Moreover, the greatest time for which the pencil 
can remain balanced can be calculated. (More precisely, the probability that the pencil 
has fallen can be calculated for any given time t). The reason for the difference 
between the classical and quantum interpretations of the problem lies in the 
unachievability of the specified conditions in the latter case. A precise, and lasting, 
localisation of the pencil to the vertical is not consistent with quantum mechanical 
uncertainty. Preparation of the pencil in a state of definite position (i.e. vertical) leads 
to divergent uncertainty in its momentum, hence velocity, and thus it falls all the 
quicker. [We may also remark that the requirement that the pencil be undisturbed is 
also unachievable. The turbulent quantum mechanical vacuum imparts its zero-point 
motions to the pencil, and these are irradicable]. Thus, the quantum mechanical 
problem replaces the ideal conditions with the best approximation that is, in principle, 
achievable whilst respecting the precepts of quantum physics.   

A solution to the problem has been given by Laughlin ( A Different Universe , Note 
12 to Chapter 5), albeit described differently. [Laughlin considers a bowling ball in 
unstable equilibrium atop a convex hill]. The time taken to fall is given by Laughlin 
as,    

time to fall = ]/gLm8log[g32/L 232

    

(1)  

where, L = the height of the hill (or the height of the centre of gravity of the pencil), g 
is the acceleration due to gravity, m is the mass of the ball (or pencil), and  is 
Planck s reduced constant as usual (and log is natural). Laughlin uses m = 7.3 kg and 
L = 1 metre, giving a maximum balancing time of about 9 seconds. [With these data 

we get g32/L  = 0.056 seconds, and the log term is 164.8.]. But Equ.(1) appears to 

be a factor of 8 too small  see Section 4.  

Note that Equ.(1) is very insensitive to the mass. Thus, for L = 1 metre, changing the 
mass from 1 tonne to 1 gram, which changes the argument within the logarithm by a 



factor of 1012, changes the time to fall by only ~17%. Even if the mass of an electron 
is used, the time reduces only by about a factor of 3. Nevertheless, Laughlin s formula 
does have a mass dependence and one may wonder whether this violates Einstein s 
principle of equivalence. The timescale for motion in a gravitational field would not 
normally depend upon the inertia. But the source of the mass dependence is purely 
quantum mechanical. It arises from the irreducible uncertainties in position and/or 
momentum which apply in the quantum regime.   

We derive below the maximum time that the pencil can remain stable using a 
sequence of approximations in the quantum mechanical treatment. Before turning to 
this, however, we review the quantum mechanical description of (roughly) localised 
particles in terms of wave packet solutions of the Schrödinger equation.  

2. Wave Packet Solutions Of The Schrödinger Equation In 1D Free Space 
In the absence of any potential field (i.e., in free space) the Schrödinger equation in 
one spatial dimension reduces to,     
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The plane wave solutions of definite energy, E, and momentum, k , are,     

tkxie

 

where, 
m2

k
E

22

   

(3)  

To localise the particle, its momentum must become uncertain. In other words a 
solution which is a superposition of the definite-k plane waves must be considered. 
An analytically convenient superposition to consider is a normally distributed 
momentum, i.e.,     
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(4)  

where gwp stands for Gaussian wave packet , 2k22/1 is the variance of the 
momentum distribution, and  is understood to be given in terms of the wavenumber, 
k, by (3). Since the exponent is quadratic in k, the integral may be carried out 
explicitly in the usual manner (e.g. by completing the square and shifting the origin in 
k-space as appropriate). A is a normalisation constant and may be found by 
requiring the square-integral over x to be unity. The result is,     
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(5)  

where,  
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We shall see that tx  is a measure of the uncertainty in position at time t, and 0x  is 

the uncertainty in position at time zero. Note that k/1x0 , i.e. the standard 

deviation in position is the reciprocal of the standard deviation in momentum. We also 
note that,      
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We also note that the minimum uncertainty in momentum is given by,      
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(8)  

In terms of which the positional uncertainty at time t can be written,     
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(9)  

Thus, we see that the initial uncertainty in position is increased by a term which, quite 
reasonably, multiplies a velocity uncertainty by time  though the two are combined 
in quadrature rather than linearly, as a consequence of the random-walk nature of the 
underlying physics.   

Note that we may also define a complex positional uncertainty,   
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          (9b)  

Replacing tx in the denominator of (5) by C
tx changes gwp only by a phase factor, 

and hence is equally valid. In this form we see that (5) is identical to Schiff s 
Equ.(12.2).  

Using,     
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the square modulus of (5) gives the probability density as,      
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in agreement with Schiff (12.21). Equ.(11) justifies the claim made above that tx is 

a measure of the uncertainty in position at time t (namely the standard deviation).   

Because of the way it has been constructed, the Gaussian wave packet has a 
probability density which is maximum at x = 0 at all times. Equ.(9) shows that the 
uncertainty in position increases monotonically with time, t. The Gaussian wave 
packet in x-space becomes progressively flatter and broader with time.  



 
Equ.(8) and (9) display an important pathology. If we attempt to reduce the positional 
uncertainty by allowing 0x0 , we are defeated immediately because, for any non-

zero time, the positional uncertainty is then infinite. This is because our insistence on 
0x0  leads to the momentum uncertainty being infinite, so the position becomes 

completely unknown an instant later. How, then, can we minimise the positional 
uncertainty at time t? Simple differentiation shows that this requires the choice 

m2/tx 0 , for which choice the spatial and momentum parts of (9) contribute 

equally, giving the minimum achievable positional uncertainty at time t to be,      
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There is therefore nothing we can do to stop the increasing loss of information about 
the whereabouts of the particle. The particle inevitably diffuses away from its starting 
position (near x = 0), the word diffuses being an accurate description of the physical 
process involved. The diffusive (random walk) nature of the process is betrayed by 
the square-root time dependence in (12).      

From Tables of the error function, and using (11), there is ~50% chance of the particle 

being within 2/xx t at time t. We may ask the question, if we draw a circle 

(sphere) of radius a around the origin, x = 0, what is the shortest length of time that 
we must wait before the particle has probably diffused outside the sphere? Of course 
we are considering just one spatial dimension at present, so the sphere is just the 
interval [-a, a]. The most prolonged localisation of the particle pertains for the choice 
(12), so the greatest time for which the particle remains within the sphere with a 
probability of >50% is,     
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Thus, if we imagine the inside of the sphere to contain a vanishingly small potential 
hill , Equ.(13) gives the time it takes for the particle to fall off this hill. Thus, the 

particle falls off even though there is nothing to fall from (the potential hill is of zero 
height).   

However, for macroscopic objects, the time given by (13) is extremely long. For 
example, a one micro-gram particle takes ~2 x 1019 seconds (45 times the age of the 
universe) to diffuse out of a 1mm sphere. On the other hand, an electron would 
diffuse out of an atom sized sphere in only ~10-16 seconds. Thus, with no potential to 
drive the process, the diffusion is insignificant for macroscopic objects. In contrast, 
even without any potential, the diffusion is crucially important for atom-sized objects. 
In fact, sub-atomic particles can diffuse over macroscopic dimensions very quickly. 
Hence a free electron will diffuse ~8mm in one second, and a free proton will diffuse 
about 0.2mm.    



3. The Method of Stationary Phase 
Before considering the problem of the balanced pencil we shall first derive the key 
equation which will be used to approximate the integral which will appear in the 
problem. This is the method of stationary phase. We shall derive a higher order 
approximation here than is normally used. This is because this higher order 
approximation is necessary to get an acceptable result for the free particle wave-
packet, whose exact solution has been discussed in Section 2. Ironically, it is a higher 
degree of approximation than is needed for the balanced pencil problem  at least as 
we develop it here.  

The method of stationary phase is concerned with finding approximations to integrals 

of the form 
b
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dxxifexp)x(g , where g and f are real. The implicit assumption is 

that g does not vary too much when f changes by ~ . In this case, the relatively rapid 
variation of the phase factor means that contributions from neighbouring regions tend 
to cancel out in the integral. The exception is when f(x) passes through a stationary 
value, say at x = x0. In this case there will be constructive, rather than destructive, 
interference in the vicinity of x0. The integral will then approximate to g(x0) times 
some width , x2  x1, within which f does not differ too greatly from its stationary 
value. The approximation is developed by re-writing g(x) as an exponential, i.e.,     
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where h and f are real, and the interval [a, b] is assumed to contain a single stationary 

point where 0
x

f
, at x = x0. Expand both functions in a Taylor series to quadratic 

order,      
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these expressions into (14) and carrying out the Gaussian integral by completing the 
square in the exponent, in the usual way, yields,  
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The more usual, lower order, method of stationary phase ignores the Taylor terms in h 
beyond the constant term, and hence produces, 
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To illustrate the method we now look again at the Gaussian wave-packet defined by 
Equ.(4), which is of the required form, i.e. of the form of Equ.(14)  though the 
independent variable is k rather than x. We readily see that in this case,  
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The last of these meets the requirement for the approximation of Equ.(16a) to apply. 
Substituting the values from (17) into (16a) confirms that the approximation 
reproduces the exact expression given by Equs.(5,6), up to the normalisation constant.   

In passing we note that using the more usual, cruder, approximation given by 
Equ.(16b), fails to reproduce the exact integral. Instead it produces a result like 
Equ.(5) but with 2

00t x and ,xm2/tx . This is a reasonable 

approximation when /xm2 t 2
0 , but fails to correctly reflect the fact that the 

uncertainty in position has a minimum of 0x  at t = 0.  

4. The Balanced Pencil 
Let the half-height of the pencil be L, with mass m. Its potential energy when at an 
angle  to the vertical is thus cosmgL . Assuming that the bottom end of the pencil 
does not slip, the kinetic energy due to the centre of mass motion as the pencil falls is 

2/Lm
2

. But there is also kinetic energy of rotation which evaluates to 3/Lm
2

, 

making a total kinetic energy of 6/Lm5
2

. In terms of the linear momentum 

associated with the centre of mass motion, mLp , the total kinetic energy is 

m6/p5 2 . Taking p to become )L(/ when quantised, the Schrödinger equation for 
our falling pencil is,     
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This differs from the Schrödinger equation for a point mass, m, rolling down a 
circular hill of radius L only in the factor of 5/6, which would be ½ for the point mass. 
We shall work in a quadratic approximation for the potential, giving,     

E
2

1mgL
mL6

5 2

2

2

2

2

  

(18b)  



This leads to the potential falling to zero (i.e. the pencil lying flat on the desk) at 

2 as opposed to the correct angle of 2/ . We shall also write (18b) as,     
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where, m
5

3
m~ for the pencil, but mm~ for a point mass rolling down a hill.   

The WKB approach holds that the energy eigenstates obeying (18c) can be expressed 
approximately as,   
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where the integral appearing in the exponent is an indefinite integral, i.e. -
dependence is retained, and, mgLV0 and m~2/kE 22 . Thus, k is the wave-

number which applies for a particle of energy E in regions where the potential 
disappears.   

Following Equ.(4) we can find a wave-packet solution to (18c) by forming a Gaussian 
superposition of propagating wave states of type (19), as follows,  
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where /Vm~2k 0M . The integral is carried out over Mkk  which ensures that 

all the contributing eigenstates are propagating waves. It is not mathematically 
obvious that we should exclude states with Mkk , which correspond to waves 

which propagate normally in regions of low potential, but which are exponentially 
decaying (or rising) near the top of the potential hill . Nevertheless, we stick with 
(20) on the practical grounds that the method of stationary phase would not be 
applicable for real exponents. On physical grounds we claim it is reasonable to ignore 
waves with Mkk since these are classically forbidden to reside on top of the 

potential hill. Since we are interested in precisely that, i.e. a classical object at the top 
of the hill, it seems reasonable to neglect their contribution. We note, though, that 
there is no guarantee that a Gaussian wave-packet like (20) represents the optimal 
balance for the pencil. We are essentially just proceeding by analogy with the free 
wave-packet (for which the Gaussian wave-packet of Equ.(4) is indeed optimal).  

The method of stationary phase can now be applied to evaluate (20) approximately. In 
the notation of Section 3 we have,  

2
Mkk)k(h

 

(assuming k > kM), and,  (21a) 



 
2

2
2
M

222 k
m~2

t
d

L

2
1kk)k(f

  
(21b)  

The integral in (21b) can be evaluated exactly, and ignoring the constant term gives,  
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where,  2
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The method of stationary phase now requires us to find the stationary point of f(k) 
with respect to k. To simplify this we note that the log term will only be very weakly 
dependent upon k, and hence we shall treat the log term as a constant. To do so we put 

1~  inside the log. Specifically we define,   
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where k0 is the value of k which makes f stationary in this approximation (see below), 
so that is just a numerical constant. We thus approximate (22a) by,  
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If this approximation is thought rather too course, we shall show later that, for the 
mass and length scales of interest in a macroscopic application (specifically a pencil), 
a factor of 10 error in the argument of the logarithm represents an error in the stability 
time of less than 2%. Differentiating (22d) with respect to k gives,    
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Hence, f is stationary when k = k0 where k0 is found from,     
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Solving gives,  
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It suffices to work in lowest order of the method of stationary phase, using Equ.(16b) 
for which the real exponent part is hexp . Using (21a) this gives, 
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Write (25) as, 
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In (27) we cannot consider times earlier than 
M

min k
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is no solution for k0 from Equ.(24) and the method of stationary phase does not apply.   

At times just infinitesimally greater than tmin we see from (27) that the first term 
blows up and we have 0 . Thus, the wave-packet solution does correspond to a 

highly localised particle at early times, as required. (The fact that 0  rather than a 

small but finite value may be traced to the approximations used, particularly the first 
order method of stationary phase, which also leads to vanishing positional uncertainty 
at early times in the case of a free particle, see Section 3).   

However, from (27) we see that there is a finite time when the RHS becomes zero, 
and hence . This is when,     
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Solving gives,     
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The notation reflects the fact that when the uncertainty in position diverges the pencil 
can be regarded as having already fallen over. Hence the time given by (28a,b) is the 
upper bound stability time. Substituting for kM gives,     
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In this derivation we have rather obscured the nature of the positional dependence of 

the wavefunction. The exponent in Equ.(26) actually depends upon 2
M0 kk , not 

upon 2
0k as we have implicitly assumed. The true exponent can be written, using (27),  
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At sufficiently early times, when is small, the term 
2

2

dominates, and the above 

derivation is valid. However, we are most interested in the time when the pencil 
becomes unstable, at which time is very large and the kM terms dominate. By 

retaining three terms in the binomial expansion of the square-root, Equ.(29a) becomes 
in this limit,  
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Thus, the spatial dependence of the wave function as instability is approached tends to 

the form 
4

t

4

exp , where, 
4

1

M
t

k2
. Thus, the spatial dependence is rather 

unusual and the characteristic scale , t , differs from the scale by a constant 

factor. However, this makes no significant difference to the argument. The spatial 
uncertainty still blows up when diverges, at the time given by Equ.(28c). Thus 

Equ.(28c) is indeed the valid upper bound stability time.  

The final step is to approximate 0 so that can be estimated from (22c). For this we 

note that (27) gives,      
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where we are ignoring factors of order unity and have replaced the spatial uncertainty 
with a value representative of near-instability ( L~ ), and correspondingly put 

2/1~ . Substituting the value of kM gives,     
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0 is dimensionless, and for macroscopic objects is an extremely large number 

because of the denominator of . Consequently, for macroscopic objects we can 
make the further approximations,  
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Hence, our final expression for the stability time is,     
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In the case of a ball rolling down a hill of height L, for which mm~ , this is of the 
same form as Laughlin s expression, Equ.(1). In particular the argument of the 
logarithm is the same. However, our expression has a factor of 4 in the denominator 
of the leading term, rather than 32. Equ.(1) therefore appears to be a factor of 8 too 
small (unless I have made a blunder). Substituting Laughlin s values (m = 7.3kg, 
L=1m), Equ.(32) gives an upper bound stability time for a bowling ball atop a 1 metre 
circular hill of 26 seconds.   

The Pencil: A typical pencil has mass 5g (0.005 kg) and half-length, L = 8cm = 
0.08m. Substitution into Equ.(32) gives an upper limit stability time of ~5 seconds. 
We have included the terms in 6.0m/m~ in this case.   

The approximations we have made are so crude that the numerical factor of 8 within 
the logarithm in Equ.(32) is actually meaningless. It could easily be in error by a 
factor of 4 or more. The agreement of argument of the logarithm with Laughlin s 
formulae, Equ.(1), is therefore probably fortuitous. However, for macroscopic objects 
an error in this argument by a factor of ten or so makes very little difference to the 
answer. The argument of the logarithm for the pencil is 5.42 x 1061. Increasing or 
decreasing this by a factor of ten causes the stability time to change by less than 2%.                
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