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Abstract

The elastic-plastic finite element program BERSAFE Phase 3 is used to analyse the Double Punch specimen. The
validity of mode II toughnesses obtained from this specimen for loads beyond general yield is investigated by
examining the near crack tip fields for J-dominance. These fields are found to be consistent with the mode II
HRR fields. In addition, the eta factors correlating J with the work done on the specimen, U, are found, and this
provides the simplest means of experimental toughness measurement. Finally, the J calculations are expressed in
an assessment diagram format although the applicability of this diagram to structural geometries is not
investigated. The analyses assume plane stress constraint and stress-strain data obtained from a carbon-manganese
steel.

1. Introduction

In recent years the J-integral has become an accepted measure of the toughness of ductile
materials. From the theoretical point of view, the strength of the case for regarding J as
an appropriate fracture parameter derives from its ability to uniquely characterise the
crack tip fields. Thus, for a given material behaviour, and for loading in a fixed mode, the
J-integral uniquely defines the crack tip stress and strain fields regardless of the geometry
of the structure/specimen or of the crack, provided the relevant dimensions exceed
certain limits expressed as multiples of J/@,. For mode I specimen geometries, these
“validity criteria” have been discussed by McMeeking and Parks [1], Shih and German [2]
and Needleman and Tvergaard [3]. In the present paper we turn our attention to mode II
(in-plane shear). Green and Miles [4] have described the use of a Double Punch Specimen
(DPS) to determine mode II toughnesses in the post-yield regime. An elastic-plastic finite
element analysis of the DPS is carried out here in order to investigate the validity of
toughnesses measured in this way. Since carbon-manganese steel was the subject of the
investigations of [4], material behaviour characteristic of mild steel is assumed in the finite
element analysis. An earlier paper, [5], has performed a similar analysis for an edge
cracked square plate in pure mode II shear with n = 3 power law hardening.

2. Description of Double Punch specimen

The specimens employed in [4] were Charpy sized specimens with a 1 cm X 1 cm section.
Two cracks were spark machined symmetrically, 20 mm apart. The specimen is loaded in a
rig which tightly clamps the ends and allows a descending punch to extrude the centre, as
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Figure 1. The Double Punch Specimen.
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Figure 2. (a) Mesh, (b) Mesh detail.
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shown in Fig. 1. Any mode I loading induced by bending is minimised by working to a
close tolerance between the clamped and punched regions.

3. The finite element model

Because of symmetry about the midplane, only half the specimen need be modelled. The
2-dimensional mesh is shown in Fig. 2(a), the crack tip being at the centre of the hexagon.
The specimen width, W, is 10 mm and the mesh thickness B is taken as 1 mm. Two crack
lengths were analysed, a =5 and a = 5.385 mm. The refined hexagonal region/about the
crack tip is shown in Fig. 2(b).

Loading is achieved by:

(a) Fixing edges EF and AB in Fig. 2(a) in both directions.
(b) Fixing CD in its normal direction (the symmetry condition).
(c) Applying a uniform downward displacement to face DE.

Plane stress constraint was assumed. It is debatable whether plane stress or plane strain
constraint is the better approximation to the actual specimen behaviour. Ideally, a
3-dimensional analysis would be desirable to avoid such simplifications but this is
impracticable with the level of refinement needed to calculate the near tip fields. A
previous paper, [5], has considered plane strain behaviour in mode 1L

The elastic data assumed in the analysis was E =210 GPa and » = 0.3. The post-yield
stress-strain behaviour shown in Fig. 3 was input to the computer program as a discrete
set of points. This is the true stress/true strain curve at ambient temperature for a
carbon-manganese steel of the type used by Green and Miles [4]. The present work differs
from most analyses of this type in employing real material data rather than idealised
power-law hardening. The limit of proportionality occurs at 0.1% strain, and stress
0, = 210 MPa. The 0.2% permanent set (proof) stress is ¢, =255 MPa, and the engineer-
ing ultimate stress @, = 429 MPa.
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Figure 3. Stress-strain data.
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The finite element program employed was BERSAFE Phase 3 (Level 1) [6]. This is
based on incremental flow theory and infinitesimal strain/ displacement theory. The latter
is consistent with the small scale yielding fields of Hutchinson [7] and Rice and Rosengren
[8] (henceforth called the HRR fields) whose analyses also assumed small strain be-
haviour. In reality, sufficiently near the crack tip, the fields will certainly be influenced by
crack tip geometry changes in the post-yield regime. It seems probable, however, that
observation of the HRR fields in an infinitesimal strain analysis is sufficient to imply
J-dominance of the near tip, finite strain fields. In any case, conclusions drawn from
infinitesimal strain analyses regarding specimen validity implicitly make this assumption.
Finally, the analysis uses the von-Mises yield criterion and isotropic hardening.

4. Loading record and calculation of J

Both crack lengths were analysed up to an applied displacement of 45 pm in 90 equal
increments, each increment involving many iterations (typically 10 to 20). The analysis of
the smaller crack length (a/W = 0.5) was extended to a total of 61 pm in a further 45
increments at which point convergence problems were encountered and analysis had to be
discontinued. The load-displacement behaviour resulting from the analyses is shown in
Fig. 4. These load-displacement data were fitted to a 7th order polynomial. The mean of
the two fits is shown as the continuous line in Fig. 4. The difference of the two fits allows
the difference in the work done AU between the two crack lengths, at a given displace-
ment D, to be calculated by explicit integration. J is then calculated through its
interpretation as the energy release rate, —AU/BAa. The results are also shown in Fig. 4.
The LEFM value for J is also shown for comparison at the same displacement (the load
axis does not apply to the LEFM value). These results apply to the average crack length,
i.e. a/W=0.519. The normalised elastic stress intensity factor (K /m/ma) was found to be
1.00, where 7= F/BW and F is the load applied to the mesh.
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Figure 4. Load-displacement and J-displacement curves.
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Figure 5. Plot of J versus U.

Figure 5 plots J against the work done, U. Experimenters often employ J-estimation
formulae which relate J linearly to U. Figure 5 shows this to be justified for the DPS
beyond general yielding and gives the “eta factor” np = 0.847, where,

TIPU

"B e

—0.16 N/mm (beyond general yield) (1)
(Note: U is the total work done, including the elastic part).

Thus, the effect of the strain hardening is to reduce 1p below the value of unity that would
be expected from a simple, perfectly plastic limit load analysis. Evidence in support of this

Table 1. ETA factors

D (pm) Estimation Present analysis
of
Ref. [9]
<6 0.575* 0.575 *
15 0.78 0.73
25 0.83 0.79
35 0.86 0.81
45 0.87 0.82
100 0.91 -
200 0.93 -
300 0.94 -
400 0.94 -
0 1 -

* LEFM value
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Figure 6. Plastic engineering shear strain on ligament (# = 0) against normalised distance from crack tip.

may be obtained by using the J-estimation procedure of Bradford [9]. This procedure
interpolates,

anB(WL/[——a) (2)

between the LEFM and limit load regimes. The results of this procedure are compared
with the results of the finite element analyses in Table 1. The two methods are broadly in
agreement, and the estimation procedure shows 7 tending asymptotically to 1 for large D.
In Figs. 4 and 5, D, and D, are the displacements at which the mean ligament shear
stress, 7, = F/B (W —a), for ‘the average crack length, is 7, = 0,/ V3 and =0,/ V3
respectively. General yielding occurred very close to displacement D,, i.e. when the mean
ligament shear stress was 7. This contrasts with the plane strain, square plate analysis of
[5] for which general yielding did not occur until the mean ligament shear was 1.36 ;.
Figure 4 shows that, for the same displacement, the LEFM and elastic-plastic values for J
are equal for loads up to general yielding, or slightly beyond. This was also observed in [5].

5. Crack tip fields

In plotting the crack tip fields we make use of a dimensionless distance R =r0,/J.
J-dominance of the tip fields is then characterised by a unique curve against R at all
loads. Figures 6 and 7 show the (engineering) shear strain and shear stress on the ligament
(i.e. = 0) within R ~ 5 in the general yield regime. The FE data cover an 11-fold increase
in J, all beyond general yield, and all fall fairly convincingly on a single curve, barring
some numerical noise. Shih [10] has calculated the HRR fields for mode II in plane stress
and for power law hardening with n =3 and »n = 13. On # = 0 the HRR amplitude factors
are the same for n =3 and n = 13 (see Table 2) and may be taken to be appropriate for
the present materials data for which a power law fit gives n = 5.2. The HRR shear stress
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Figure 7. Shear stress on ligament (8 = 0) versus normalised distance from crack tip.

on the ligament is therefore derived to be 342 R™%!® MPa. This curve is shown in Fig. 7
and compares well with the finite element results in general yield. Because a power law
behaviour was not assumed in our analysis, care must be taken in deriving the “HRR” "
strain field to compare with our FE results. Essentially this is because the best power law
fit to our data may give significantly different strains from the data assumed in the
analysis at strain levels above those plotted in Fig. 3. (BERSAFE uses a linear extrapola-
tion beyond the last two input data points). The simplest strain “prediction” is obtained
by combining our assumed materials data with the above HRR stress field. The result is
shown in Fig. 6 and is in reasonably good agreement with the FE results.

Figures 8 and 9 give the # components of strain and stress respectively on the radial
line at #=60° to the ligament. The data again lies on a unique curve at all loads, to
within some numerical tolerance, indicating J-dominance. In this case the mode II, plane
stress HRR fields from [10] have differing amplitude factors for n=3 and n =13 (see
Table 2). Figures 8 and 9 include HRR “predictions” based on both these amplitude
factors, but using the radial dependence and I, factor appropriate to n=15.2 (best fit) in
every case. The two HRR curves roughly define upper and lower bounds to our FE
results, indicating agreement to within the best accuracy that can be established with
existing HRR solutions.

Table 2. HRR parameters used (mode II, plane stress) -

[/ Amplitude parameter
0 0%y = 0, = 0.57

60° e3=043, =018

60° 03 =071, 0F =090

All radial functions defined by n= 5.2
Is; =11, a=164
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Figure 8. Plastic §-strain on § = 60° versus normalised distance.

Finally, Fig. 10 plots the engineering shear strain on the ligament against R on a
logarithmic scale. For HRR behaviour, the resulting plot should be a straight line with
slope 0.84. The FE data is indeed of this form, up to a maximum distance somewhat in

excess of 1 mm.
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Figure 10. Log plot of plastic shear strain on ligament (§ =0, R > 5).

6. Assessment diagram

The results of an elastic-plastic calculation of J may be expressed in the format of an
assessment diagram. This is achieved by defining the ordinate,

X = \/ J(LEFM)

J(elastic-plastic)

The numerator and denominator being evaluated at the same load (F'), so that K, < 1. An
assessment diagram plots K, against a suitably normalised load. We choose as abscissa.

s 9t
A V)

Values of S, and K, are given in Table 3 and presented graphically in Fig. 11. For
comparison, the assessment diagram of Bradford et al, [11], derived from (mode I)
compact tension specimens using the same material data (see Fig. 3) is also shown in Fig.
11. Note that the definition of S, implies that if collapse is associated with some ultimate
stress, then this occurs when S, is substantially in excess of unity. Figure 11 also shows.the
results of the edge-cracked square plate analysis of [5]. In this case, the load normalised by
the general yield load (7 /75y, see Table 1 of [5]), is converted to the present “flow” based
normalisation by multiplying by 20,/(0,+ ¢,)=0.61. It is not surprising that this
diagram lies above that for the DPS, beyond general yield, because of the steeper strain
hardening assumed in the former (n = 3).

In engineering applications, K, is interpreted as K/K; where K is the LEFM stress
intensity and K, is the critical /initiation toughness. Thus, a post-yield structural assess-
ment can be made using only the LEFM fracture parameter, K. The usefulness of the
assessment diagram method derives from the assumption that the diagram is, at least
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Table 3. Tabulation of assessment diagram

S, K,

0.093 0.998
0.275 0.974
0.394 0.927
0.492 0.866
0.569 0.801
0.627 0.739
0.670 0.679
0.701 0.628
0.743 0.546
0.786 0.477
0.840 0.429
0.886 0.387
0.911 0.364
0.936 0.343

roughly, geometry independent. A major feature in ensuring this is a suitable choice of
normalising parameter for the abscissa.

7. Conclusion

The results of Section 5 have shown that, for the mode II specimen analysed, the crack tip
fields are uniquely determined by.the parameter J, and are consistent with the correspond-
ing HRR fields [10]. Since the DPS provides a simple, practical mode II toughness test in
the postyield regime, as demonstrated by Green and Miles, [4], the evidence provided by
the present analysis that such toughness data are valid is clearly of some interest. The
main proviso is that validity has only been demonstrated for,

This is because convergence problems prohibited analysis of larger loads, not because any
deviation from J controlled behaviour was found. Nevertheless, our analysis has extended
significantly into the post-yield regime, the maximum applied displacement being more
than 6 times that to cause general yielding. In this context one may recall that the limit of
validity for centre cracked panels in tension (ie. W —a~ 200 J/0,) occurs prior to

T ]

Sr

Figure 11. Assessment diagrams.
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general yielding, [1,2]. The ASTM E399 criterion for a valid K-test implies that values of
(W —a) m/J less than 1440 are significantly yielded. Thus, even the present limited
analysis extends substantially the range of valid toughnesses which may be obtained from
a given ligament size.

A second proviso is that we have not investigated 3-dimensional effects or attempted to
derive validity criteria for the thickness dimension, B. In particular, the effective out-of-
plane constraint (plane stress versus plane strain) may vary along the ligament in a 3D
analysis. In this respect the situation is identical to that in mode I where only 2D analyses
of the near tip fields have been performed (e.g. [1-3]).

The last proviso is that we have considered only one material behaviour, although this
is characteristic of carbon-manganese steel rather than a power-law idealisation. In
practice, most materials do not conform to power-law behaviour. Most typically the
effective hardening index, n (where €, @") is larger at small strains of a few percent
than at large strains. If J-dominance is observed for a large value of #, then it will
presumably also occur for smaller n values, i.e the larger hardening index is more onerous
to the occurrence of J-dominance (see for example Amazigo [12]). It is desirable, however,
to analyse representative materials data since it is not clear whether the effective n value
relates to the (high strain) crack tip region or the (smaller strain) far field region.

In addition, we have given in Table 1 the eta factors which relate J to the work done,
U, and hence allow mode II toughness measurements to be made simply. Finally, Fig. 11
presents our J results in assessment diagram form, and indicates some mode/ geometry
dependence of the diagram when compared with the mode I compact tension specimen
diagram based on the same materials data, [11].
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Résumé

On recourt au programme d’étude par éléments finis élastoplastiques BERSAFE phase 3 pour analyser le
comportement de 'éprouvette au cours de I’essai de double poingonnement. On étudie la validité des ténacités en
mode II obtenus a I’aide de cette éprouvette dans le cas de mises en charge conduisant 4 plastification généralisée
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et au-delh, en examinant les domaines voisins de I'extrémité des entailles ol I'intégrale J est prédominante. Ces
régions sont établies conformes aux régions a singularités de Hutchinson, Rice, Rosengren en mode II. En outre,
on trouve les facteurs de corrélation liant J au travail U appliqué & I’éprouvette, ce qui procure le moyen le plus
simple de mesurer une ténacité par voie expérimenale. Enfin, les calculs de J sont exprimés sous forme d’abaque,
bien que I'on n’en ait pas étudié I’application 4 des géométries de constructions. On suppose, dans les analyses
faites, que le bridage en un état plan de tension et les données tention-dilatation correspondent & un acier au
C-Mn.



