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1. The Usual Story 

Why is quantum field theory (QFT) divergent? The neophyte, having mastered the 
arcane formalism of QFT, comes across the divergences for the first time when (s)he 
tries to calculate the second order term in a scattering amplitude. The infinite result 
presents itself in the form of a momentum space integral which is divergent. For 
example, in quantum electrodynamics (QED), the lowest order term in (say) electron-
electron scattering is given by the Feynman diagram, 

Figure 1  

which is perfectly finite (and produces a good enough result to be proud of in most 
circumstances, perhaps accurate to ~1% or so). However, one of the Feynman graphs 
contributing to the second order correction is, 

Figure 2  

The virtual electron-positron loop which has entered the virtual photon line 
contributes to the scattering amplitude due to this graph a factor of, 
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pD  is the (spinor valued) Feynman propagator for the electron or 

positron ( pp ) and  is the fine structure constant (~1/137). But (1) is, of 

course, divergent since its large-p behaviour is pdp
p
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, since dpppd 34 ~ . 

Why does this happen? Where did we go wrong? 

The purpose of this brief essay is to trace the source of this problem. We shall argue 
that this debacle is inherent in the most fundamental aspects of the formulation of 
quantum mechanics. The problem originates from the canonical commutation 
relations - that conjugate variables behave thus: ixp, . These are the seeds of our 
destruction. Let us start with that.  

2. Lifting the Carpet 

Consider any pair of dynamically conjugate observables, represented by Hermetian 
operators P  and Q  on some Hilbert space. QM tells us they will obey the canonical 

commutation relation, iQP, . Initially let us assume that both observables take 

values from a discrete set, ip and iq , i.e., they have discrete eigenvalues. A 
contradiction immediately results from the usual formulation, as follows.  

Putting  jjj qqqQ  , the Hermetian nature of Q means that the eigenvalues are 

real and iii qqQq . It also means that the eigenvalues are orthogonal (and can be 

assumed normalised), so that ijji qq . Now consider the matrix element of the 

commutator between two q-states,   

ijjiijjijiji iqPqqqqPqqPqqPQQPq
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For i = j this results in the contradiction that the RHS is non-zero but the LHS is zero.  

Have we really been so foolish as to erect our supposedly most fundamental theory of 
physics upon foundations so obviously and seriously flawed? It may well be that the 
answer is yes . But elementary QM must implicitly include some means of avoiding 
this disaster.   

It does. But it is not spelled out in texts with which I am familiar. QM generally 
avoids the problem by not considering conjugate pairs of observables which both have 
discrete sets of eigenvalues. To see how this is used to circumvent the difficulty 
consider a free particle in infinite Euclidean space. Equ.(2) becomes,     
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It is not obvious that this has helped, until it is remembered that the matrix elements 

of iP  with respect to the free states rpiexp  are,     
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and also that,     
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So (3) is correct. Both sides are zero when rr  and when rr , rPr  is so 

strongly divergent that it overcomes the zero in rr  and the product is still 
divergent!  

Interpreting P and Q the other way around requires,     
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In infinite space this is consistent for the same reason, i.e., we have,   
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were  denotes the derivative of the Dirac delta function. So far, so good. But things 
start to go wrong even when we consider something as innocent as imposing periodic 
boundary conditions, so that the wavefunctions are required to be periodic with a 
period of L, say. Confining attention to the 1D case, the periodic wavefunctions are 

xipnexp  with Lnpn /2  (note that we have put 1 ). This is consistent with 
orthonormality and completeness relations over the region Lx ,0 ,    
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We can also show that (4) remains true, so that (2) is again consistent due to the 

severe  divergence in rPr . However, when we consider (2) in the form,    
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we run into trouble again. For mn , both sides of (9) are zero  fine. But now we 
find that for mn , nn pxp  is finite. This is inevitable since it is evaluated as the 

integral of finite quantities over a finite domain. Specifically, (possibly ignoring some 
constant factors), 
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which is zero for mn , as required, but,     
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Consequently for mn  the LHS of (9) is L0  and the RHS is ~ . A sort of sense 
can be restored to this as long as the periodicity, L, is large. The accuracy with which 

mn pp  can be measured to be zero is limited, in a box of side L, to be within L/ . 

So, in a crude heuristic sense, the LHS of (9) is then L
L

~ , and hence 

compatible with the RHS.  

However, this explanation relies upon introducing a rather ad hoc physical 
rationalisation into what should be a clean mathematical position. Am I alone in 
finding this grossly unsatisfactory? And why is this problem not exposed in the 
standard texts? 



A further example is angular momentum. Surely this provides an instance of clean, 
finite good sense? Certainly the derivation of the eigen structure of 

njknkj LiLL ,  is faultless and finite. But derivation of the eigen structure does 

not require the variable conjugate to L . If one brings the angular position variable 
into play, the same problem occurs as exposed in (2) and (9). The usual explanation 
of this is that the periodic nature of the angular coordinate means that either it is 
multiple valued, or, if confined by fiat to the region 2,0 , then it is discontinuous. 
But how impressed should we be by such an excuse? 

Quantum mechanics is all about discreteness. That is its essence. In quantum 
mechanics, systems are fully described by a finite set of integers. For free particles, 
discrete states result from topological compactness. The periodicity of rotations 
results in the discrete angular momentum states, and imposing translational 
periodicity results in discrete linear momentum states. But these are the very cases 
where (2) becomes inconsistent.  

So is there something rotten in the state of quantum mechanics? It seems that to avoid 
the problem posed by (2) we need to adopt the continuum. This is contrary to the 
finite spirit of quantum systems, and, ultimately, cannot be physical if systems truly 
are fully specified by finite sets of integers. The continuum exists only in mathematics 
not in the physical world. But nevertheless the continuum has been embedded at the 
heart of quantum mechanics since Dirac introduced his delta function. This was our 
compact with the Devil and our downfall.  

3. Field Theory: Commutators and Propagators 

Field theory, of course, re-emphasises the point. A field is, by definition, defined over 
the spacetime continuum. In view of the previous discussion, adoption of a field 
description may seem perfectly sensible. After all, the only case considered above 
which was free of the contradiction posed by (2) was the infinite continuum. 
Accordingly, then, field theory is based upon the assumption that a field and its 
conjugate field obey the canonical (equal time) commutation relations, thus,    
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where,    
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The subscripts on sr ,  may denote different scalar fields or the different 
components of a field with spin, it does not matter which. The canonical commutation 
relations of the fields are equivalent to those of Fock space creation and annihilation 
operators,  

rssr kkVkaka 3,  rssr kkVkbkb 3,            (14) 

other commutators being zero, and where the fields are expanded in terms of plane 
waves (Fourier terms) as,    
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In (14) and (15), V is some suitably large normalisation volume which will factor out 

of any observable quantities. I may have dropped some factors of 32  from either 



(14) or (15)?? In the exponents, /rpEtxkkx , and the integral is carried 

out on the understanding that it is on mass shell , 22
0 // mckcEk k .  

From the effect of the Fock operators on the vacuum, specifically that 00ka , and 

from the expansion (15), we readily derive the vacuum expectation values of products 
of field operators. For example,    

xxcixx rssr 00              (16) 
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In (16, 17) we have now assumed that the fields are scalars for simplicity of 
exposition. Otherwise the  functions would have spin labels, rs, e.g., they would be 
spinor valued for fermions. This is without loss of generality as regards the burden of 
our argument. We will see that the QFT divergences arise due to the spacetime 
structure of the fields. Consequently any spin/vector/tensor labels on these quantities 
would just go along for a free ride and make no substantive difference to the 
observations below. 

Note, however, that the functions (17) will differ for different scalar fields due to the 
mass dependence implicit in the on-shell k .  

In practice it is the vacuum expectation values of the time-ordered products of fields 
which are required to derive physical quantities. These give rise to the Feynman 
propagator,    

xxcixxT Frssr 00              (18) 
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and t  is the unit step function. Note that xx FF  and that when 0t , 

x  are real, equal and opposite and non-zero. Consequently F  is continuous over 
0t  and non-zero.  

The key observation is that the functions xx F,  are divergent at 0x . This 

follows immediately from (17) since kdk
kd

k

3

. This will shortly be seen to 

be the source of all the divergences in QFT. It is appropriate, therefore, to pause to 
consider just why these propagators are divergent. There are two perspectives on this. 

The first is to note that the fields must obey the Euler-Lagrange equations of motion, 
and, for the usual Lagrangians, this implies that the free fields have the form of plane 
waves, as in (15). Provided that we also assume that the creation/annihilation 
operators have the commutation relations (14)  and this would appear to be 
necessary in order to produce the right commutation relations for the fields, (12) 

 

then (16-19) follow as a consequence. 

There is, however, a more basic motivation for this conclusion, which does not 
depend upon the fields having a creation/annihilation structure. This starts by noting 
that the canonical commutation relations, (12), are not explicitly Lorentz covariant. 



This is because they have been written at equal times, which is a frame specific 
concept. How can they be made covariant? Start by noting that,     
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The obvious nearest equivalent of the RHS of (20) which comprises Lorentz invariant 

parts is kde ikx 4 . There are two problems with this. Firstly it produces a factor of 

t , which is not compatible with the RHS of (12). Secondly, it is an off-mass-shell 
integral, effectively integrating over all particle masses as well as their momenta. The 

latter problem can be rectified by inserting 22 mk  into the integrand. This makes 

the integral purely on mass shell, m. Moreover, because 22 mk  is a Lorentz scalar it 
preserves the invariance of the integral. Finally, note that the Dirac delta function has 
the property,     
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The RHS sums over all the zeros of the function xf . Thus we have,    
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Consequently the desire to re-write the equal time commutation relations in a 
covariant form results in,  
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[In (23) the ~ just means I ve been lazy about bothering to track the right constant 
factors]. So we see that it is really the Lorentz covariant extension of the canonical, 
equal time, commutation relations that appears to lead inexorably to these singular 

 

functions.  

As an aside, note that (22) displays the true origin of the denominator of k  which 

appears in the definition of the fields, (15). Some authors are guilty of stating that this 
is merely, a normalisation factor introduced for later convenience . This is 
appallingly misleading. Actually the denominator of k  is crucial to the Lorentz 

transformation properties of the fields, as the above derivation shows. But also, its 
presence is crucial in the definition of the propagators, (17). Without the denominator 
of k  the propagators would be different and the predictions of field theory for 

scattering amplitudes, decay times, etc., would be different  and plain wrong! 

4. Transition Amplitudes 

The bulk of our argument is already done. It remains only to show how terms of 
second order and above in  generally involve products of Feynman propagators at 
the same spacetime point. This is the fatal feature. Single factors of functions like 



xx  or xx  are tolerable in integrands since the integrals will generally be 

finite despite the singularity in the integrands. But something like dxxx 2  is 

catastrophic since it produces (heuristically speaking) 0 , i.e., it is divergent. But 
scattering amplitudes in field theory of second order and above generally include 
factors which are quadratic, or of higher order, in F  evaluated at the same spacetime 
point. Note that it is the evaluation at the same spacetime point (or interval) which is 
the problem (or, as we see later, a sequence around any closed loop). An expression 
like 2121 xxdxxxxx  is sensible when 21 xx .  

What remains is just standard text book stuff, deriving the Feynman diagrams / 
integrals from the interaction Hamiltonian. However, here we shall work in spacetime 
not momentum space. Consider an interaction Hamiltonian between two scalar fields 
of the form,     
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Hence is a scalar surrogate for the electron, and  is a scalar surrogate for the 

photon. In the interaction picture, the time development of a state t  is given by,     
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Hence, tdttHtiti
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12  and by repeated substitution into the integrand we 

get, 
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In (26), t0 is some time before which the interaction was not active. We note in 
passing that it is causality which requires the first form of (26), and hence requires the 
time-ordered product of the second  and hence leads to the Feynman propagator 
being the relevant function in QFT. 

The terms of order n in (26) correspond to contributions to the scattering amplitude of 

order 2
nne , with n vertices in the corresponding Feynman diagram. Consider 

electron-electron scattering in lowest order, as given by the Feynman diagram of 
Figure 1. We want to evaluate, 
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Now the integrand is quadratic in IH  and hence of order 6 in the fields as a 
consequence of (24). The product of the four fields is required to first annihilate the 
incoming electrons, and then to re-create a pair of outgoing electrons. This will give a 
non-zero value for (27) so long as the vacuum expectation value of the product of two 

 fields is non-zero. This vacuum expectation value of the product of the two 

 



fields is just the Feynman propagator, (18). Consequently we get, in a spacetime 
formulation,                    (28) 
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In (28) the superscripts +/- denote the creation & annihilation parts of the electron 
field respectively, and the Feynman propagator refers to the photon . Of course, (28) 
is not terribly enlightening as it stands. Each of the fields is of the form  
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, where p is one of the relevant electron 4-momenta. 

Substitution of these into (28) and explicitly carrying out the x-integrals produces 
delta functions in k-space for every vertex of the Feynman diagram representing the 
conservation of energy and momentum at each vertex. The Feynman propagator can 
be written as its k-space integral, (17,19), but the 4-momentum over which this 
integral is carried out also appears in the delta functions expressing energy-
momentum conservation. Hence, the integral is trivial and the momentum-space 
expression for the scattering amplitude becomes essentially,    
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Modulo a delta function representing overall energy-momentum conservation. Had 
we carried this through properly for spin ½ electrons and the massless vector photon 
the result would have been,   

2
21

22112
_1

~
pp

pupugpupu
eoutin

orderst

  

           (30) 

What concerns us here, however, is the scattering amplitude for the second order 
diagram of Figure 2. Contrary to the normal practice, our message is that it is only 
necessary to consider the spacetime expression for this amplitude to see that it is 
divergent. This diagram corresponds to the n = 4 term in (26). This involves a factor 
of 8 electron fields and 4 photon fields. Four of the electron fields are used up as 
before in annihilating then re-creating the incoming electron pair. This leaves 4 
electron fields and 4 photon fields which contribute to the scattering amplitude via 
their vacuum expectation values. Since pairs of vacuum expectation values result in a 
Feynman propagator, we get two electron propagators and two photon propagators. 
This is correct, as can be seen from Figure 2 (the internal lines being the propagators). 
The spacetime expression for the fourth order contribution to scalar electron-
electron  scattering is thus,                  (31) 
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In (31) we have distinguished between the Feynman propagators for the electron and 
the photon with suitable superscripts. Note that the spacetime positions over which 
the integrals are carried out are shown on Figure 2. The crucial feature of (31) is that, 
as a consequence of the two electron propagators in Figure 2 connecting the same 



pair of spacetime points, and thus forming a closed loop, the above scattering 
amplitude contains the factor, 
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Consequently it is clear that the second order contribution to the scattering process is 
divergent. Of course, we can express (31) in momentum space in the usual way and 
come to the same conclusion because,    
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which is the scalar equivalent of the more correct Equ.(1).  

Before closing note that above it was stated that terms of second order and above 
generally involve products of Feynman propagators at the same spacetime point. 
Terms of this sort do occur in almost all higher order scattering amplitudes. This is 
because any internal or external electron line in an nth order expression can be 
replaced by a line including an added virtual photon (electron self-energy) to generate 
an (n+1)th order term. Similarly, any photon line can have an electron-positron virtual 
pair loop added (vacuum polarisation). However, I can think of one process whose 
lowest order diagram has 4 vertices, namely photon-photon scattering. (This is a 
phenomenon which is impossible classically since the linearity of the classical 
Maxwell equations mean that two e/m fields cannot interact). The diagram is, 

Figure 3  

This diagram is divergent and requires renormalisation to provide a finite prediction. 
In momentum space this is because,   
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In the spacetime formulation we have a term in, 
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This does not actually involve a product of propagators at the same spacetime 
interval. However, the singularity of the propagators at 0 means that there is a non-
zero contribution to such integrals from this point. In other words the propagators 
behave in a similar manner to delta functions. This means that the integral over, say, 

4x  will include a part which is roughly, 
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Similarly, carrying out the 3x  integral will include a part which is roughly, 

fields12213
4

2
4

1
4 xxxxxdxdxd FF             (37) 

This now contains a product of propagators at the same spacetime interval, and is 
hence divergent. Consequently exceptional graphs like Figure 3 are not really 
terribly different. 

Summary 

The source of the divergences in QFT can be traced to the product of propagators 
evaluated at the same spacetime point. Since the propagators are distributions, akin to 
the Dirac delta function rather than finite functions, such products are singular even 
when integrated. The requirement to adopt such singular propagators can be traced to 
the combination of the canonical commutation relations for the quantum fields and the 
requirement for Lorentz covariance. The creation of a finite QFT, with no need of 
renormalisation, would therefore require abandonment or modification of either the 
canonical commutation relations or Lorentz covariance.         
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