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1. Introduction 

I had always thought that renormalisation was required only in quantum mechanics, 

specifically in quantum field theory. In fact it is needed in classical field theory also.  

 

2. Classical Electrostatics 

Consider two point charges q1 and q2 separated by a distance r. We know very well 

what is their mutual potential energy, i.e., 
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(using cgs units). This can be derived as the work done to bring the charges to 

distance r from infinity. Thus, we assume the Coulomb force expression, 
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The work done is thus, 
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as per Equ.(1). Now we would like to understand this potential energy as residing 

within the electrostatic field. The expression for the field energy in terms of the field 

is known, i.e., 
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In the case of two charges separated by a distance r, the field is the linear 

superposition of those due to the two charges separately, 
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where the two position vectors 
21
r and r  run from the respective charge to the field 

point, thus, 
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Substituting (5) into (4) gives the field energy density as, 

 

   







⋅++

π
=ξ

212

2

2

1

21

4

2

2

2

4

1

2

1 r̂r̂
rr

qq
2

r

q

r

q

8

1
    (6) 

 

Now when we attempt to evaluate the total electrostatic field energy by integrating (6) 

over the whole of space, a shocking thing happens. It is infinite. The reason is the 

infinite self-energy term. If we tried to evaluate the field energy for just a single 

charge, say charge 1 from the field of Equ.(2), we would get, 
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Thus, if we let the radius of the charge, δ, become zero, the self-energy of the charge 

becomes infinite. Fortunately, the energy of the field for two charges, from (6), can be 

written, 
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where S.E. represents the self-energy of a charge as per Equ.(7). Now this self-energy 

exists even when the two charges reside at infinite separation. In providing an 

explanation for the mutual potential energy of the charges at a finite separation we 

clearly should not include this self-energy. Thus, the total field energy given by (8) 

must be renormalised before being equated with the potential energy by subtraction of 

the self-energy terms. Thus, we actually wish to demonstrate that, 
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noting that this renormalisation may involve the difference between infinite quantities 

if the charges are point charges. 

 

But is Equ.(9) correct? That is, does it reproduce the result of Equ.(1)? If so, we 

require to prove the identity, 
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Proof: 

The cosine theorem gives, 
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Projecting onto r1 gives, 
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We have, 
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Note that we have reintroduced the zero lower limit of integration in (13). We have 

yet to show that the result is finite. By an elementary substitution the angular integral 

can be formed, namely, 
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where, 
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Hence, substituting: 
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Hence we find… 

For r1 > r :- 
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For r1 < r :- 
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Substituting (15) and (16) into (13) gives, 
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thus proving Equ.(10) as required.  

 

Note that the fact that the angular integral is zero within the circle r1 < r, as given by 

Equ.(16), is essential to allow the lower limit of the r1 integration to be replaced with 

‘r’ instead of 0. If the integral of (17) were continued to 0 it would, of course, be 

divergent. The reason why the angular integration can be zero for r1 < r is that the  

numerator of (13), i.e. 
11

cosrr θ− , changes sign over the range of integration. This is 

such an important point that it is worth considering a little further. Consider the 

original form of the integral, i.e., 
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The integrand in this integral is negative when 2/π>α . Thus, the integrand is 

negative within the sphere given by 22

2
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1
rrr =+ . This is the sphere centred on the 

mid-point between the two charges and passing through both charges, i.e. of diameter 

r. If we now consider the sphere of diameter 2r centred on one of the charges, we 

know from the above derivation that the integral is zero within this sphere. Note that 

this 2r diameter sphere contains the former sphere of diameter r. Pictorially, 
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Integrand is negative within 

this smaller sphere of 

diameter r 

Integral over this 2r diameter 

sphere is zero (the negative 

contribution from within the 

smaller sphere cancels with the 

contribution from the region 

between the two spheres) 

q1 



3. The Difference Between Electrostatics and Gravity 

 

I used to think that there was no essential difference between the (Newtonian) gravity 

of two point masses and the electrostatic case of two charges of different sign. Of 

course, gravity is always attractive. But for the case of two masses only, choosing 

charges of opposite signs surely makes the situations equivalent? This is not the case.  

 

Whilst the (renormalised) potential energies in the two cases are the same (modulo 

replacing masses with charges), the total energy in the field is quite different. In the 

electrostatic case, the total field energy is always positive definite – since 
2

E is 

necessarily positive. The potential energy between two opposite charges is negative 

only as a result of the renormalisation process. In other words, the negative 

electrostatic potential energy is merely a result of the zero datum employed. We 

would nevertheless expect the energy in the electric field around two such opposite 

charges to have a net positive effect, e.g. it would produce an attractive gravitational 

field.  

 

The situation with gravity is quite different. In this case the field energy is itself 

actually negative. This is true both when renormalised and unrenormalised. Thus, for 

gravity, the field energy is (in the non-relativistic Newtonian approximation), 
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