
Chapter 57 

The Total Mass-Energy of the Universe 

The demand for general covariance puts the conservation of mass-energy in a 
special category. Gravitational energy must exist but is a terribly slippery fish 
and cannot be pinned down. Consequently the question of the total universal 

mass-energy appears irresolvable unless there is somewhere outside the 
universe in which to stand to do the measurement. Nevertheless there is a 

perennial temptation to regard the total mass-energy as zero, since this makes 
creation ex nihilo consistent with the principle of conservation. This Chapter also 

presents a Newtonian cosmology, the poor man s approach to the Friedmann 
equation and the expansion of the universe.  

Last Update: 23/1/12  

1. Is there such a thing as the Total Mass-Energy of the Universe ? 

Venture into this area only with the greatest circumspection. There are major 
technical barriers to a satisfactory conclusion. Some would say that this is an 
understatement and that actually it makes no sense to talk of the total mass-energy of 
an arbitrary universe/spacetime.  

This latter point of view can be argued as follows. Relativists know that mass-energy 
is not a scalar quantity. For a localised system, say a particle, the mass-energy is just 
the time component of a momentum 4-vector, P . Consequently its magnitude is 
relative to the chosen coordinate system. There is nothing deep or subtle about this. It 
merely means that the observed kinetic energy of a particle depends upon the relative 
state of motion between the observer and the particle. So, with respect to what 
coordinate system would you like the total mass-energy of the universe calculated? 
There is no satisfactory answer (in general). This objection has even greater force 
when applied to momentum. If we can evaluate a total 0P  then presumably we can 
evaluate a total iP . But how disconcerting would it be to be told that the total 
momentum of the universe were X  kgm/s? With respect to what? The reason for our 
different reactions in the two cases is that our intuition is non-relativistically 
conditioned to regard mass-energy as a scalar. But it is not.  

One response to this issue might be to say, Ah, clearly the total P  of the universe 
must be zero, because this is the only case in which all linear transformations would 
leave its components invariant and hence produce a unique answer . I do not propose 
this as a serious argument. However, if it were, it invites you to consider the universe 
as an isolated system embedded in a greater super-universe. This illustrates the source 
of the problem. In order to weigh the universe you must have somewhere outside it on 
which to stand [paraphrasing Misner, Thorne & Wheeler (1973)]. From this 
perspective we see that we cannot (in general) deduce the total mass-energy of a 
universe by integration of quantities within the spacetime of the universe itself. 
Calculation of the total mass-energy of the universe would seem to require some 
theory which addresses multiple universes in some larger spacetime.  

Well then, if the problem is intractable, what more can we have to say? Firstly, it is 
important to examine the nature of gravitational energy in more detail, since it has a 
different status from other forms of energy. Secondly, it is illuminating to consider a 
Newtonian cosmological model. This has the advantage that our relativistic scruples 



are by-passed and a definite result for the total energy is obtained. Whilst this is 
obviously of dubious relevance to the true relativistic case, one may hope that it 
provides faithful guidance, if only on the grounds that the Newtonian model correctly 
reproduces the Friedmann equation. Finally, it is also worth reviewing very briefly 
what other theories have a bearing on the issue of the total mass-energy (such as 
inflation theory, for example). However, the source of the driving fascination of the 
issue of the total mass-energy is the creation of the universe. 

The most obvious problem with the creation of the universe in the Big Bang is that we 
appear to get something from nothing. Before the Big Bang there was nothing, but 
afterwards we have the whole universe in embryo. Ostensibly this is the ultimate 
violation of the conservation of mass-energy. An elegant resolution of this problem is 
provided if the total mass-energy of the universe is actually zero.  

Relativists will tell us that this is a mistaken way of looking at the matter. Time itself, 
they will say, was created in the Big Bang. So there was no before and we should 
not worry about the conservation issue. But does this not strike you as sophistry? 
Perhaps it is sound physics, but it leaves one feeling less than satisfied. The reason is 
that it removes the instant of creation from the reach of enquiry by placing it outside 
the jurisdiction of causality. It seems that if we wish to bring the creation event itself 
into the scope of science then we must be super-observers standing outside of normal 
spacetime. Is there then a super-causality in terms of which we can ask how and why 
did the Big Bang occur ? Would this super-causality respect the conservation of 
mass-energy in some sense? We have no grounds for making any such claim. But the 
centrality of the conservation laws in physics is such that, if we are to continue 
science into this super-observer realm outside of normal spacetime, our inclination 
will be to take the conservation laws along with us. The great appeal of the zero mass-
energy hypothesis is that it makes the creation of the universe ex nihilo consistent 
with existing scientific principle. But just how credible is it? 

2. How Could the Total Mass-Energy be Zero? 

The contents of the universe with which we are familiar all contribute positive mass-
energy. This is true of the ordinary matter of which the stars, planets, etc., are 
composed. It is also true of the electromagnetic radiation and neutrinos which pervade 
the whole of space. It is also true of the dark matter which is postulated in order to 
explain the gravitational behaviour of galaxies, both their initial formation and their 
observed rotation. The attractive gravity of this postulated dark matter is its key 
attribute, and hence it necessarily has positive mass and hence positive mass-energy.  

So how can the total mass-energy of the universe possibly be zero if its contents all 
have positive, non-zero, mass-energy? The answer is the gravitational potential 
energy, which so far we have not considered. It is clear that the sign of the absolute 
gravitational potential is negative. Gravity is attractive. Kinetic energy increases as a 
pair of gravitating bodies move closer together, so their mutual gravitational potential 
energy must decrease. But their potential energy is zero when infinitely distant. So, at 
a finite distance their gravitational potential must decrease below zero, i.e., it must be 
negative.  

Can the negative gravitational potential energy possibly have a large enough 
magnitude to cancel with the positive mass-energy of the whole contents of the 
universe? Our intuition recoils at the idea. On the scale of our planet it is clearly false. 
The gravitational potential energy of the Earth is obviously of paltry proportions 



compared to its mass-energy. Remarkably, however, on the scale of the whole 
universe the answer is that the gravitational energy could be of the right order of 
magnitude, as we shall see below. But, for the general relativistic spacetimes which 
are believed to describe our universe, the calculation of either gravitational energy or 
total energy is fraught with difficulties. These difficulties are described in the next 
section. The section after that will make plausible the suggestion that the total energy 
could be zero by means of a well defined calculation using a Newtonian cosmology. 
The final section discusses briefly some other reasons for believing the total energy 
might be zero.  

3. Local and Global Expressions of Conservation in GR  

The approach taken here is rather simplistic. For a more rigorous treatment of energy 
in general relativity see R.M.Wald (1984) or J.Stewart (1996). Our intention is only to 
convey the nature of the difficulty in defining a unique total universal mass-energy. 
Let us start by reviewing how conservation laws are formulated mathematically in a 
spacetime continuum.  

Consider a flat spacetime and some 4-vector JJJ ,0  representing the density and 
flux of some conserved quantity. The local expression of conservation is the 
vanishing of the divergence of this 4-vector density, which in flat spacetime and in 

Lorentzian (Cartesian) coordinates is 0,J . That this local differential condition 
corresponds to global conservation can be seen by integration of the divergence over a 
prismatic spacetime region defined by a spatial volume V extruded between two time 
slices 1t  and 2t . We thus find, by Gauss s theorem,  
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In (3.1), dS  is an element of the 3-surface which forms the boundary of the 4-

dimensional volume integration in the first expression. This closed 3-surface 
comprises three parts:- 

(i) The curved surface defined by the boundary, V , of the spatial volume projected 
along the time axis over the interval 21, tt . This is the curved surface of the 
prism. 

(ii) The bottom end cap of the prism defined by the time slice 1t  and the spatial 
volume V; 

(iii) The top end cap of the prism defined by the time slice 2t  and the spatial volume 
V. 

If the physical system in question is assumed to be confined within the spatial volume 

V so that 0J  on the boundary of V then the first term on the RHS of (3.1) is zero 
and it becomes,     
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The quantity Q, defined by the spatial integral of 0J  and hence equal to the amount 
of stuff within V, is conserved since its value is the same whatever time is used to 



carry out the integration. More generally, if J  does not vanish on the boundary of 
the chosen spatial region, V, the interpretation of J as the flux of stuff out of unit 
area per unit time means that (3.1) remains consistent with the conservation of stuff , 
i.e., it gives,     
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(3.3) 

and (3.3) identifies the amount of stuff within region V at time 2t  with amount at 
time 1t  less the amount which has flowed out through its boundary in the period 

21, tt , i.e., that stuff is again conserved.  

What happens to this argument if spacetime is curved? The local conservation 

condition, i.e., the vanishing of the ordinary divergence, 0,J , becomes the 

vanishing of the covariant divergence, 0;J . The scalar of 4-volume is xdg 4

 

so that xdJg 4
;  is a scalar with respect to arbitrary coordinate transformations. 

But we have an algebraic identity,     
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(3.4) 

Consequently, because the RHS of (3.4) is algebraically of the same form as an 
ordinary divergence, the argument based on (3.1) proceeds exactly as before except 

with J  replaced by Jg . So (3.3) becomes,    
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(3.5) 

and this implies conservation of stuff  in the same way as before.  

It appears, then, that the formulation of conservation is quite straightforward in curved 
spacetime. And so it is for most interpretations of the stuff in question. For example, 
the above formulation applies to the conservation of electric charge, formulated in 

terms of the 4-vector of current density, J . However, when mass-energy is 
considered we encounter a difficulty.  

Why is the conservation of mass-energy different? The reason is that mass-energy is 
just one component of the 4-vector of energy-momentum, P . All four components of 
this 4-vector are subject to their own conservation law, as required by Noether s 
Theorem corresponding to translational invariance in the four spacetime directions. 

So, to each component of  P  there corresponds a conserved flux density, J , and 

being tensorial in both indices what we end up with is T , the stress-energy tensor. 
What is special about the conservation of energy and momentum is that they are the 
specific quantities which are conserved by virtue of translational symmetry in the 
spacetime in question. The conserved quantities are intimately linked to the geometry 

and we are dealing with the tensor T  not merely a single flux density J . 

Let us consider firstly the conservation of energy/momentum in flat spacetime. Its 

local formulation is again the vanishing of the ordinary divergence 0,T . The 
interpretation of this follows exactly as before, because, in writing the equivalent of 



Equ.(3.1), the extra index  simply goes along for a free ride. So, for example, if we 

assume that the system is localised and that V is chosen large enough so that 0T 
on the boundary of V, then the equivalent of (3.2) is,     
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Note that (3.6) implicitly requires Lorentzian (Cartesian) coordinates, because 

otherwise we are not justified in writing the ordinary divergence as 0,T .  

Equ.(3.6) shows that 0T  can be interpreted as the density of a set of four conserved 
quantities labelled by , and the fact that P  is the momentum 4-vector follows from 
the derivation of T

 

from Noether s Theorem. Moreover, even if T  does not 
vanish on the boundary of V, the equivalent of (3.3), i.e.,      
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(3.7) 

can be interpreted in terms of 4-momentum flowing out of V with a flux density in 

direction i  of iT .  

So far, so good: but now the problems start. Consider how we may formulate the 
conservation of energy-momentum in curved spacetime. The ordinary divergence 
again generalises to the covariant divergence so that the local expression of 

conservation must be 0;T . In fact this equation is forced by the Einstein field 

equations, T
c

G
G

4

8
, since the vanishing of the covariant divergence of the 

Einstein tensor is an algebraic identity, 0;G .  

However, we cannot simply insert an extra index in Equ.(3.4) and proceed as before. 
The resulting expression is simply wrong, i.e.,      
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Instead, the nearest equivalent expression is of the form,    
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where  is a non-linear expression dependent only upon the metric tensor and its 

first derivatives. Moreover

 

is not unique since any 

 

may be added to it 

provided that 0
,

g . Different authors favour different expressions for , 

see, for example, Misner, Thorne & Wheeler (1973), Equ.(20.22), or Adler, Bazin & 
Schiffer (1975), Equs.(11.40, 11.54).  

Now, using (3.8), we can proceed as before. Firstly let us assume that the supports of  

T  and  are both contained within V and hence that T  and 

 

vanish on its 
boundary. Then the equivalent of (3.6) is, 
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Note that it is implicit that Lorentzian (Cartesian) coordinates are used to evaluate 
(3.10), since only then are the terms on the RHS of (3.9) equal to ordinary flat space 
divergences  and also for another reason discussed below. 

In (3.10) we again have a conserved 4-momentum. However, in addition to the term 
in 0T , which represents the stress-energy of the matter and fields comprising the 

physical system, there is also a contribution from 0  which depends only upon the 

geometry. Since 0

 

appears to play the role of a 4-momentum density and depends 

only upon the spacetime geometry, it is natural to interpret  as the stress-energy 
tensor of the gravitational field itself  natural, but subtly wrong.  

In the case of curved spacetime, (3.10) tells us that the conservation of energy and 
momentum will not hold for the matter and fields alone, but only if gravity is included 
as part of the source of energy and momentum. This is perfectly proper and just as it 
should be. Consequently everything looks rosy  apart from three problems, at least 
two of which are serious. 

The first we have noted already. The algebraic expression for the object  is not 
unique. This does not necessarily matter very much since an alternative expression 

will differ from  by a term with 0
,

g  so that (3.9) still holds. Any such 

alternative expression for  will, upon integration, give the same 4-momentum as 
(3.10).  

The second problem is more fundamental. The object  is not a tensor. There is no 

generally covariant (i.e., tensorial) quantity  for which (3.9) holds. Whilst  is 
as near as we can get to a stress-energy tensor for gravity, actually there is no such 

thing. The best we can do is the stress-energy pseudo-tensor, , sometimes called 
an energy-momentum complex . This is a more serious problem as regards how 
(3.10) is to be understood.   

In deriving (3.10) from (3.9) we have made the replacement dVdxdxdx 321 . But we 
are only justified in interpreting dV as a spatial volume element if these coordinates 
are Cartesian. This is possible only because in this special case we have assumed the 
spacetime to be asymptotically flat. Equ.(3.10) must be calculated using Lorentzian 
(spatial Cartesian) coordinates. For a true tensor equation, the coordinate system 
employed would not matter. The specific coordinate system is required precisely 
because (3.10) is not a tensorial equation. Only by specifying the coordinate system 
does its value become unique. This is a serious problem because, in general, the 
spacetime will not be asymptotically flat. Without an asymptotically flat region we 
are left without a definition of the total mass-energy.  

The most stark illustration of the non-tensorial nature of  is to recall that the 
coordinate system can always be chosen to be locally Lorentzian, so that the non-

Euclidean nature of the geometry is not locally apparent. This means that  can be 
transformed to zero at any point by appropriate choice of the coordinate system. If it 
were a tensor, this would be sufficient to imply that it was identically zero in all 
coordinate systems. Hence, any attempt to pin down the gravitational energy density 
at a point is frustrated  gravitational energy is not localisable in GR. Actually this is 
rather fortunate (or perhaps we should say unavoidable ) since the gravitational 



energy is negative. It would be hard to understand the mass supposedly equivalent to 
an absolutely negative energy if this were also localisable.   

The third problem is again fundamental. Even had a tensorial total stress-energy 

tensor existed, expressions like xdTg 30

 
are essentially meaningless in curved 

spacetime. This is because the integrand is vector-valued and the direct addition of 
vectors at different spacetime positions is, in general, meaningless. Only in the case of 
flat spacetime with Cartesian coordinates does this become meaningful as a 
consequence of the fact that the unit vectors are the same everywhere.  

Despite all these technical difficulties in the general case, the total mass-energy of a 
universe which is asymptotically flat can be uniquely and sensibly defined. The 
asymptotically flat region effectively forms the platform on which we can stand to 
perform the weighing of the finite region containing mass and curvature. That this can 
be done is virtually obvious on physical grounds. Standing in the asymptotically flat 
zone, outside the region of matter fields and curvature from which the mass-energy 
originates, one need only measure how the gravitational field is reducing. Sufficiently 
far from the sources this must approximate the far field of the Schwarzschild or Kerr 
solutions. Fitting to the metric of those solutions provides the total gravitating mass. 

Finally, though, we are left with the truly intractable case: curved spacetimes with no 
asymptotically flat region. There is now no region within which we can find a 
Lorentzian (Cartesian) coordinate system: nowhere we can stand to do the weighing. 
There is then no definition of what we could mean by the total mass-energy.  

The spacetimes normally assumed to be appropriate for our universe, the FLRW 
spacetimes, do not have asymptotically flat regions when 0k . The case of 0k  is 
globally flat, but being infinite and homogeneous there is still nowhere to stand to do 
the weighing . Hence the total mass of the FLRW spacetimes (or their mass per unit 
volume for the infinite universes) is undefined. Consequently most physicists regard 
the question of total universal mass-energy as meaningless.  

However a few have not been discouraged and have attempted to calculate the total 
mass-energy of certain solutions to the Einstein equations, most often by evaluating 
the gravitational pseudo-tensor in coordinates of their choice. The result has most 
often been reported as zero, but not always. For example, the total energy of certain 
FLRW and Bianchi spacetimes have been claimed to be zero by Rosen (1994), 
Cooperstock (1994), Johr et al (1995), Banerjee and Sen (1997) , Xulu (2000) and 
Radinschi (2001).  However, in view of the above remarks it is not clear that these 
results have any significance. And evaluation in other coordinate systems can result in 
non-zero energies, e.g., Garecki (2006, 2007).  

Moreover, the same methodologies that led to zero total cosmological energy can also 
lead to the conclusion that gravitational waves carry zero energy, e.g., Rosen and 
Virbhadra (1993). If true this would mean that gravity waves will never be detected. 
But the sticky bead  argument [see, for example, Bondi (1957)] is a convincing 
argument that, on the contrary, gravitational waves do carry energy  and hence that 
calculations such as that of Rosen and Virbhadra (1993) are misleading. For a 
rigorous demonstration that gravitational waves radiate positive energy to infinity see 
Wald (1984). But there is now also observational evidence. Whilst gravitational 
waves have not yet been detected, there is at least one instance of good indirect 
evidence. 



The pulsation period of the binary pulsar PSR B1913+16 has been observed to decay 
by 76.5 microseconds per year, a change of ~0.13%, . This decay rate agrees very 
well with GR calculations of the rate at which gravity waves are expected to radiate 
away energy due to the mutual orbit of the two neutron stars. The agreement is better 
than 0.2% which is strongly suggestive of the reality of energy-carrying gravitational 
waves. The discovery of this binary pulsar and its implications won the 1993 Nobel 
Prize in physics for Joseph Taylor and Russell Hulse.  

4. Total Energy in a Newtonian Cosmology 

In this section we attempt to make plausible the idea that the total energy of the 
universe could be zero (if only we could define it) by consideration of a Newtonian 
cosmology in which total energy is well defined.  

When cosmologists talk of a Newtonian cosmology they generally do not mean the 
cosmology in which Newton believed. Most people before Hubble, including Newton, 
believed that the universe was essentially static and eternal. Of course Newton was 
well aware of the conflict between the universe being both static and also subject to 
universal gravitational attraction. His view was that this conflict was resolved by 
virtue of the universe being infinite, so that the forces on every material element (i.e., 
the stars) were balanced due to being equal in all directions. (Was he troubled by the 
obvious instability of such an arrangement? Why did he not consider the possibility of 
a rotating universe, which would be consistent with a static radial mass distribution 
whilst also being finite? The required rotation rate between a pair of solar mass stars 
at a spacing of 4 lyrs would be a mere 0.17 minutes of arc per millennium, and hence 
would not have been apparent. Not then, anyway. Today it would probably be 
detectable via an anisotropy of the cosmic microwave background, with a cylindrical 
symmetry).   

4.1 The Newtonian Cosmology Model 

A Newtonian cosmology is generally understood to mean a particular model of the 
universe based on Newtonian gravity. The universe is considered to be a finite sphere 
of uniform density embedded within an infinite Euclidean space. This is allowed in 
Newtonian theory because there is no consistency condition between the mass 
distribution and the spacetime geometry. Unlike Newton s own cosmology, however, 
this Newtonian cosmology provides a model of an expanding universe. The tangential 
velocities are assumed negligible. It is a simple matter to derive the equation 
governing the radial velocity. Remarkably this equation is identical, in the absence of 
dark energy and pressure, to the Friedmann equation which results from relativistic 
cosmology. For this reason it is not wholly inappropriate to consider the Newtonian 
model. In the context of the problem of the total energy, the advantage of considering 
the Newtonian model is that its gravitational energy is well defined and simple to 
calculate.  

The equation of motion of the Newtonian model is derived as follows. Consider a 
small mass element, m, at a radius r  from the centre of the sphere. The gravity inside 
a uniform spherical shell is zero, and hence only the matter at radii less than r 
contributes to the motion of m. Moreover, the gravity due to the matter at radii less 
than r is the same as if all the mass were concentrated at the centre (because the mass 
distribution remains spherically symmetrical at all times). Hence, the purely radial 
motion obeys, 
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But the assumption that the density is always uniform plus the conservation of mass 
can be written,    
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where the subscript 0 denotes some arbitrary reference time and r is the radial 
coordinate of any mass particle whose position at the reference time is 0r . Now, since 

drrdrr / we can integrate (4.2) explicitly to give, 
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          (4.3) 

where the constant of integration is constant with respect to time but may (and indeed 
must) depend upon the reference coordinate, 0r , of the mass element in question. It is 
worth noting a blunder which it would be easy to make when carrying out the 
integration over r on the RHS of (4.3). Since the density is uniform, i.e., independent 
of r, we might be tempted to conclude that the RHS was instead, modulo the constant,   
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a result which is of the wrong sign as well as differing by a factor of 2. The error 
results from forgetting that the integration should track the path of the given mass 
element as it evolves in time, tr , as opposed from an integration over the sphere at a 
given time, which is the quantity evaluated in (4.4). The actual integration we need is 
really a surrogate for a time integral, i.e., dtrdr ...... . Since the density, , is time 

dependent, it cannot be taken outside of the integral, as was done in (4.4). Instead the 

integrand must be re-expressed as in (4.3) because 3
00r

 

is time independent, by (4.2), 
thus permitting the integral to be carried out.  

We labour this point because it has an important bearing on the integration constant in 
(4.3). Let us write it in terms of a dimensionless k as, 
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The claim that k is constant with respect to time, rather than with respect to the 
reference coordinate, 0r , is precisely because the integration is really over time. But 
why have we also claimed that k must depend upon 0r ? The reason is that the 
derivation of (4.5) was based upon the assumption that the sphere remains uniform at 
all times, i.e., (4.2). The equation of motion, (4.5), must yield this result or it is simply 
contradictory. But uniform density at all times requires the whole sphere to dilate or 
contract uniformly, which means that 0/ rr  is the same for all points in the sphere. 

Hence 0/ rr  is also the same at all points in the sphere. Dividing (4.5) by 2
0r  we get, 
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The LHS of (4.6), and the first term on the RHS, are thus both independent of 0r , 



from which it follows that 2
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rkk  must be independent of 0r . So (4.6) is better 

written as, 
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Whilst k is dimensionless and constant in time, it varies across the sphere. In contrast, 
k
~

 has the dimensions of reciprocal length2 and is constant both in time and over the 
sphere.  

Note that k
~

 

has the dimensions of curvature (the same dimensions as the Einstein 
tensor, G ). This is not accidental. Equs.(4.5-7) are identical to the Friedmann 

equation, to which the Einstein equations of general relativity reduce for a 
homogeneous and isotropic spacetime. More accurately, Equs.(4.5-7) are the 
particular case when the only source of gravity is a uniform mass density, , and there 

is no cosmological constant (dark energy). In GR the parameter k
~

 

is the curvature of 
space. 0

~
k  corresponds to a flat space, 0

~
k  to positive curvature, and 0

~
k to 

negative curvature.  

Note that if k
~

 

= 0, Equ.(4.7) is just Hrr , i.e., the Hubble relation which says that 
radial velocity is proportional to radial distance. The equation tells us the value of the 

Hubble parameter, namely GH
3

8
. 

However, in the Newtonian interpretation, k
~

 is a constant determined by the initial 
conditions. For example, if the velocity at a given radius is specified at some datum 
time then k

~
 is determined by (4.7).  The velocity at all other radii at this time must be 

consistent with Equ.(4.7) with this same value of k
~

 if the presumption of uniform 
density is to remain true as the universe evolves. So the Newtonian model is 
consistent with a permanently homogeneous universe only if the initial conditions are 
specially contrived. 

Equ.(4.7) can also be written as,     
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where rM  is the mass up to radius r, which is independent of time because this 
mass always remains equal to its starting value, say 0rM . Equ.(4.8) clearly implies 
that the velocity reduces as the universe expands to a bigger radius  which is just 
kinetic energy being converted to potential energy. But does the universe expand 
forever or does it reach a maximum size and collapse? If the latter occurred there 
would be a time at which the velocity were zero, so that the maximum radius is given 
by,     
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A finite solution to (4.9) exists only if 0k , which is interpreted in GR as a space of 
positive curvature. The maximum radius attained by a trace mass which was initially 
at radius 0r  is thus, 
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In particular the maximum radius of the sphere (i.e., the whole matter content of the 
universe) is,  
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where M  is the mass of the whole universe (the sphere) and 2
0

~
akka  is the value of 

the dimensionless constant which applies at the surface of the sphere.  

In the limit that 0k , interpreted in GR as flat space, the velocity asymptotically 
approaches zero as the sphere becomes infinite, i.e., 0r  as maxaa  .  

Finally, if 0k  then (4.8) implies that the outward velocity is always positive. 
Consequently such a universe expands forever (interpreted in GR as a space of 
negative curvature).  

4.2 The Energy of the Newtonian Model 

There are several ways to derive the total gravitational potential energy of the 
Newtonian cosmology model. The answer is,     
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GM
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        (4.12) 

where a  is the radius of the sphere at the time in question, and M  is the mass of the 
sphere (which, of course, is a constant in this Newtonian model, since there is no 
mass-energy equivalence to confuse things). To derive this result recall that the 
equation for the Newtonian gravitational potential is,     

G42

     

        (4.13) 

The solution within the uniform spherical mass is, 

ar :    3
2 2

2

a

r

a

GM
r

    

        (4.14) 

whereas at radial positions outside the sphere of matter we have, 

ar :    
r

GM
r

     

        (4.15) 

Both (4.14) and (4.15) obey (4.13), in the latter case with 0 , as is easily confirmed 

using the spherically symmetric operator rr r
r

2
2

2 1
. In addition the two 

solutions match at ar  and (4.15) reduces to zero at large distances from the source. 
This establishes that (4.14,15) is the unique solution satisfying all the boundary 
conditions.  

The potential energy can now be found using the expression for the field energy 
density of Newtonian gravity,     

2

8

1

G    
        (4.16) 



The energy of the gravitational field within the sphere is therefore,           
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Whilst the energy of the gravitational field outside the sphere is,           
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Hence, adding (4.17) and (4.18) gives the total energy of the gravitational field to be 
as claimed in (4.12).  

Alternatively, we can appeal to the gravitational potential energy of a small element 
of mass m

 

being m

 

at a position where the gravitational potential is  . The sphere 
can then notionally be assembled gradually, for example layer by layer  or by letting 
the density increase slowly from zero. Either way the same expression for the total 
gravitational potential energy of the universe results, (4.12).  

We expect that the total kinetic plus potential energy of the universe should be 
conserved. To check this note that the kinetic energy of a spherical shell can be 
written, with the aid of (4.7), 
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                    (4.19) 

It is essential that (4.19) is expressed with the 0r  dependence of 2
0

~
rkk  made 

explicit. This is because we must next integrate over all radii and rr0 where the 
parameter  varies with time but not with radius. Hence integrating (4.19) over the 
sphere gives,   
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where 2
0

~
akka  is the value of the dimensionless constant which applies at the surface 

of the sphere. But from (4.12) this becomes,    
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        (4.21) 

So the total energy of the universe is a constant of the motion, as one would expect. 
Remember that the KE term in (4.21) is the non-relativistic kinetic energy.  

Within the context of this Newtonian cosmology model we note the following 
corollaries of (4.21):- 

 

For 0k (a flat universe in GR)  the total non-relativistic energy (ignoring the 
rest mass energy) is zero, 0PEKE ; 

 

For 0k (positive curvature in GR) the total non-relativistic energy is negative, 
0PEKE . This corresponds to the universe being a bound state that cannot 

expand forever. From the energy perspective, expanding to R  would 
imply 0PE  and this would require that the KE become negative, which is not 
possible. Hence if 0k  the universe has a maximum possible size, as we have 



seen already. In GR this is interpreted as a positive curvature implying a closed, 
finite universe (assuming there is no cosmological constant); 

 
For 0k (negative curvature in GR) the total non-relativistic energy is positive, 

0PEKE . Hence the universe is not a bound state and will expand forever: 
even as 0PE  at large expansions, the kinetic energy is still positive and the 
universe is still expanding at a non-zero rate. In GR this is interpreted as a 
negative curvature implying that the universe is open and infinite.  

 

Finally, we note that if we choose the boundary condition 3/10ak  then we have 

a closed universe in which 02 PEMcKE . In as far as 2McKE  is a first 
order approximation to the relativistic mass-energy, this suggests that a 
relativistic solution might exist in which the total relativistic energy is zero. Of 
course this is by no means a proof, it is merely suggestive.  

In conclusion, the Newtonian cosmology demonstrates that the total energy of the 
universe could feasibly be zero. In the Newtonian cosmology this depends upon the 
contingent choice of suitable initial conditions, i.e., a suitable value for k

~
 and a 

contrived choice of initial velocities. Hence zero total mass-energy is only possible, 
not necessary. 

5. Theories and Ideas Related to the Total Energy Question 

5.1 Constraints Imposed by the Stability of Matter 

The consensus at present is that something colloquially called dark energy  is 
driving an accelerated cosmic expansion rate. If so, then the energy of the universe is 
not even conserved. This is because dark energy involves a constant energy per unit 
volume, so the total energy increases in proportion to the volume as the universe 
expands. If dark energy exists then even a closed, finite universe with positive 
curvature, 0k , would expand forever, and at an accelerating rate. However, the 
accelerating universal expansion is not necessarily caused by dark energy. It could, 
for example, be a temporary acceleration due to the formation of large scale structure, 
see Wiltshire (2007) or Buchert (2008). In what follows it is assumed that dark 
energy, or other forms of energy creation , do not exist.  

Suppose the universe expands forever, i.e., 0k . The gravitational potential energy 
will therefore tend to zero as the matter density becomes infinitely diluted. Of course 
there will initially be gravitationally collapsed regions: planets, stars, black holes, 
galaxies, clusters of galaxies, etc. These have their own local negative gravitational 
potential energy. However even at the scale of galaxies or galactic clusters, the 
gravitational self-energy is negligible compared with the rest mass. In any case, given 
long enough, even these structures will prove unstable and evaporate, emitting their 
component particles. Even black holes will disappear eventually due to Hawking 
radiation. Ultimately, and this may involve a truly prodigiously long wait, the 
universe will contain only the stable fundamental particles: electrons, protons, 
neutrinos and photons. The energy contribution of the photons, once they are no 
longer being created, will tend to zero because universal expansion will red-shift their 
individual energy to nothing. The same would be true for any other zero rest mass 
particles which might still be present (gravitons?). Consequently, if electrons, protons 
and neutrinos all decayed via some sequence ultimately into zero rest mass particles, 
the associated energy would tend to zero. On the other hand, if electrons or protons or 



the electron neutrinos are absolutely stable then the total mass-energy of the universe 
cannot be zero. But on the enormous timescales in question, who knows if they are? 

Nevertheless, this observation suggests that a universe which expands forever (and in 
which the total mass-energy is constant) is unlikely to have zero total mass-energy. 
The reason is that it would be necessary for the conditions in the early universe to 
anticipate the ultimate instability of the fundamental particles. But these two things 
would appear to be independent. On the other hand it might be that particle instability 
is logically necessary in some future fundamental theory.  

However I tentatively suggest that universes with 0k are unlikely to have zero 
mass-energy (though I do not want to imply that this is certainly the case). This aligns 
with the Newtonian model. For 0k  the Newtonian model implied a permanent 
positive mass-energy. For 0k , whilst the non-relativistic energy of the Newtonian 
model became zero, this still leaves a balance of energy due to the rest mass of any 
remaining particles.  

This leaves the case of a finite, closed universe with k > 0. The Newtonian model was 
suggestive that a zero total mass-energy might be possible, including the rest mass 
energy, if the initial conditions were suitably contrived. This case places no 
requirement on particle instability. The energy associated with the contents of the 
universe, its particles and fields, would always be non-zero and positive. But because 
the universe would attain a finite maximum size, the gravitational energy would never 
be zero either. The two could possibly cancel  but there is no strong case at present 
that this is so, either from observational cosmology or from relativistic theory.  

However what this line of argument suggests is that if one is biased towards a belief 
that the total mass-energy of the universe is zero, then the universe is most likely to be 
closed and finite with positive curvature, 0k , which re-contracts at some time. It 
also implies that there is no dark energy . This latter point is, however, contrary to 
the current consensus.  

5.2 The Hamiltonian Formulation of GR 

If GR can be expressed in Hamiltonian form it might be thought that this would 
provide insight into the total energy since this is how the Hamiltonian is usually 
interpreted. In fact a Hamiltonian formulation is possible. And it is found that the 
Hamiltonian vanishes in a closed universe, at least in one particular formulation, see 
Wald (1984) Appendix E. However, once again the meaning of this result is obscured 
by technical difficulties. To derive the Hamiltonian formalism it is necessary to 
parameterise the theory and to introduce an associated constraint. This arises 

because of the arbitrariness of how the spacetime is foliated into time and space 
slices, a step which is essential in the Hamiltonian formulation. Ideally the theory can 
ultimately be deparameterised by inversion of the constraint equation. However, 
this inversion appears not to be possible in GR due to its non-linear nature. But the 
Hamiltonian can always be made to vanish by suitable parameterisation , and hence 
its vanishing does not necessarily have any significance. To quote Wald (1984), If 
general relativity could be deparameterised , a notion of total energy in a closed 
universe could well emerge. But this has not been done, as far as I am aware. 

5.3 Quantum Cosmology: The Wheeler-deWitt Equation 

Now we are heading into quantum gravity territory and must expect the waters to be 
choppy. But do not despair. We shall end this section with an accessible example. 



The Wheeler-deWitt (WdW) equation is the Hamiltonian formulation of GR but as a 
quantum theory (roughly, anyway). Here we give only the crudest indication of the 
WdW equation. For a more complete treatment of quantum gravity topics see, for 
example, Rovelli (2005) or Fauser et al (2000).  

Whilst the classical GR Hamiltonian is identically zero (at least for closed 
spacetimes), in quantum theory we convert the Hamiltonian function into a 
Hamiltonian operator. The Hamiltonian constraint then becomes 0H . The 

Hamiltonian operator H  has a specific representation in terms of the metric and the 
curvature, though it is not without technical ambiguities. The analogy with the usual 

Schrodinger equation, E
t

iH , suggests that this might imply that the 

energy is zero. But it is by no means clear that such an interpretation is justified. The 
reason why the time dependence disappears is that the canonical Hamiltonian 

formulation, including the Schrodinger equation, 
t

iH , is clearly not 

generally covariant but written in terms of a preferred time coordinate. A fully 
covariant Hamiltonian formulation can be devised, for example the ADM formalism 
[see for example Gourgoulhon (2006)]. It is not terribly surprising that when this is 
done the gauge specific time coordinate disappears. The same consideration for the 

spatial degrees of freedom produces the momentum constraints , 0iP .  

The wave-function in the Wheeler-deWitt equation could represent the whole 
universe. One proposed quantum state of the universe which satisfies the Wheeler-
deWitt equation is that of Hartle and Hawking (1983). This is defined by the path 
integral,    

/][exp][ gSgDNhij   (5.1) 

where N is a normalisation constant and S is the Euclidean Einstein action for a given 
spacetime with 4-metric g , i.e.,    
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In (5.2), R  is the usual Ricci scalar, expressible in terms of the metric and its first and 
second derivatives, but the integral in (5.2) is carried out in Euclideanised spacetime, 
for which the time coordinate has been replaced by it . This ensures that the action, S, 
is positive and hence that (5.1) is well defined (or, at least, it stands a chance of being 
well defined). The path integral, (5.1), is carried out over all spacetime metrics g 

which reduce to the specified spatial 3-geometry, ijh , on their boundary. The function 
2

ijh  is proposed to be the probability for the spatial 3-geometry, ijh , arising. There 

is no time in the Hartle-Hawking model. The physics is supposed to reside entirely in 
the timeless ijh . Although time appears in the action integral, (5.2), it there plays 

the role simply of parameterising the variables over which the path integral, (5.1), is 
conducted.  

From these heady heights of abstraction we can produce an accessible illustration. 
Consider for simplicity a universe which is empty except for a constant zero-point 



energy density 2cvac . Putting vacG8  the corresponding Friedmann equation 
follows immediately from (4.5),  
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(5.3) 

The other Friedmann equation, in the acceleration, follows by differentiating (5.3),     
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(5.4) 

More correctly, and to ensure general covariance, we should specify this zero point 
energy as possessing a stress-energy tensor proportional to the metric tensor, g , of 

which 2cvac  is the component 00g . The generally covariant problem is then stated 

in the form of the Einstein field equations as gg
c

G
G vac2

8 
Need to 

sort out the factors of c2 and the sign convention. However, doing the job properly 
does result in the equations (5.3) and (5.4). 

For a homogeneous, isotropic universe with no source term other than this zero point 
energy an effective Lagrangian can be derived [see Atkatz (1994) or Norbury (1998), 
from whom the development which follows was largely derived)], namely,     

3/322 rrkcrrAL

   

(5.5) 

where A  is some constant ( G/1 ). Seeking the minimum action, 0Ldt , with 

respect to variations in the single dynamic variable, tr , results in the Euler-Lagrange 
equation,    
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(5.6) 

which gives,   222 2 rkcrrr

    

(5.7) 

It is readily seen that (5.7) is consistent with the Friedmann equations, (5.3), (5.4).  

We can now convert the Lagrangian to a Hamiltonian formalism using the canonical 
procedure, namely to define,     
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and then to put,     
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(5.9) 

But the Friedmann Equ.(5.3) shows that the Hamiltonian is identically zero, in 
illustration of the general finding noted previously for Hamiltonians derived 
consistently with general covariance. Nevertheless, using the expression in terms of 

p , Hamilton s equation 
r

H
p  is consistent with (5.6,7) and hence with the 

Friedmann equations. 



Finally, the Wheeler-deWitt equation implements this Hamiltonian constraint by 
replacing the algebraically vanishing classical Hamiltonian with the quantum equation 

0H  The Wheeler-deWitt equation is obtained by following the canonical 

quantisation procedure in which the momentum variable in the Hamiltonian is 

replaced by an operator thus, ri
pp . The derivative is with respect to the 

radial coordinate because (5.8) defines p  and r  to be conjugate variables. Making 
this substitution in (5.9) and multiplying through by r  gives the WdW equation, 
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(5.10) 

Need to sort out the constants & units here. (5.10) looks like a Schrodinger equation 
for a zero energy particle in a potential, 

422

3

4
4 rrkcrV

    

(5.11) 

Forearmed with our knowledge of the behaviour of the Schrodinger equation in more 
conventional contexts, we should be wary of whether any solution exists for zero 
energy. This depends upon the sign of the curvature, k . The potential has a crucially 
different form according to whether we consider a negatively curved universe, 0k , 
or a positively curved universe, 0k , as illustrated by Figure 1. If 0k there is no 
solution. Is this true?  

But if 0k  there are solutions corresponding to ingoing or outgoing waves in the 
physical region where the potential, V, is negative (thus permitting positive kinetic 

energy). In the barrier region the potential is positive, thus requiring negative kinetic 
energy, and hence a classical particle could not reside there. The solution is analogous 
to a quantum particle tunnelling through the potential barrier from the origin and into 
the physical region. The suggested interpretation in this case is the creation of a 
universe ex nihilo. From the complete nothing of a universe with no mass-energy and 
of size 0r  (at the origin of Figure 1) a real physical universe can spontaneously 
form  or so the idea goes. Note that there is a key difference between the Wheeler-
deWitt equation (5.10) and ordinary quantum tunnelling: there is no time dimension. 
Quantum tunnelling takes place in the time domain. The particle, initially trapped near 
the origin takes a finite and calculable time to tunnel through the barrier. The solution 
to the WdW equation is timeless. It suggests that there is an ever present possibility of 
universes popping out of the quantum vacuum.  

A couple of features are worth noting. Firstly, the universe pops out from its potential 

barrier at a finite size  the root of (5.11), i.e., 
k

r
3

0 . Obviously the  in question 

cannot be the infamous dark energy which is postulated to drive the accelerating 
expansion of the universe  or the universe would have been created at its present 
size. Is this a valid argument, or have I misunderstood something? Rather what is 
envisaged here is some inflaton field (see next section). Secondly, the fact that a 
solution only exists for 0k  suggests that only closed universes can arise. This 
chimes nicely with the intimations made above that only closed universes can have 
zero energy.  



This development assumed a universe empty except for the zero point energy. But the 
qualitative results are similar if matter is included. In particular the shape of the 
potential function remains essentially the same. This can be seen by noting that in 

place of  for ponderable matter we would have 3/~8 rGMG , and hence the 

equivalent of the term 4r  in the potential, (5.11), is a term GMr~ . Hence we get a 
modified potential of the form, 

GMrrrkcrV 422

3

4
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But the extra term linear in r makes no qualitative difference. 

The reader will be aware that all such quantum cosmology ideas are highly 
speculative, in addition to posing major technical difficulties and interpretational 
problems. Current thinking has, in any case, moved well beyond the Wheeler-deWitt 
equation. Our purpose here has only been to illustrate a further context in which the 
idea of zero total universal energy arises. 

5.4 Inflation  

To be added   

Figure 1 Potential Function (5.11) versus Radius, r (after Norbury) 
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