
Chapter ? 

Where is the Charge in the Kerr-Newman Solution? 

This chapter considers the case of the Kerr-Newman solution when the mass is 
small. The charge is zero or divergent or non-zero and finite depending how you 

measure it 

Last Update: 27/10/11  

1. Summary  Where is the Charge? 

In this Chapter we shall discuss the solution of the general relativistic field equations for 

a spinning, charged mass in the case that 22 qam , where we are working in 

geometrical units (explained below). This is the Kerr-Newman solution with a naked 
singularity and would be appropriate for (say) an electron or a proton if they were 
classical rather than quantum beasts. It was rather a surprise when Kerr (1963) discovered 
the exact solution to the Einstein equations for a spinning mass, of which the Kerr-
Newman solution is an obvious extension with added charge. The topology of the Kerr-

Newman spacetime in the regime 22 qam  is a ring which borders a disc, the latter 

acting as a bridge (or wormhole) between regions of positive and negative radius , see, 
for example, Hawking and Ellis (1973). The ring is a real curvature singularity and also a 
singularity of the electromagnetic field. The curvature and the electromagnetic field are 
regular on the disc away from its edge.  

Confining attention to the physical spacetime with positive radius , we present plots of 
the electric field vector, Figures 1 and 2, which illustrate that the charge resides on both 
the ring and the disc, but with opposite signs. The charge seen at infinity ( q ) is the 
algebraic sum of these two opposing contributions. Integration shows that the magnitude 
of the charge on the disc is, in fact, divergent. Hence, the finite charge seen at infinity is 
effectively a result of an auto-renormalisation within the Kerr-Newman solution: the sum 
of the disc and ring contributions to the charge involves an infinite cancellation to leave a 
finite difference.  

However, the more fundamental observation is that, with respect to the maximal 
analytical extension of the spacetime, i.e., including the region with negative radius , 
there actually is no charge at all. This follows by evaluating the 4-current density as the 
covariant derivative of the electromagnetic field tensor  which is identically zero. The 
same result can also be deduced by tracking the electric field lines. The charge which 
apparently resides on the disc disappears when the field is allowed to pass through the 
bridge into the region with r < 0. Similarly, the charge on the ring disappears since the 

same number of lines of force emerge from it into the region with r > 0 as enter it from 
the region with r < 0. All lines of force are therefore continuous at all finite points, and 
hence there is no charge. The lines of force which are seen at r are balanced by 
those originating at r . Adopting a topology in which the r > 0 points at infinity are 
joined to those in the r < 0 region would mean that the field lines would be continuous 
everywhere. 



The rest of this Chapter presents the algebraic details underlying these conclusions.  

2. The Kerr-Newman Solution 

In Boyer-Lindquist coordinates, the Kerr-Newman metric is, 
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In (1) the coordinates tr ,,, can be interpreted as contravariant, x , and the 
coefficients are the covariant components of the metric tensor, g . The quantities 

qam ,, are the geometrical mass, spin and charge respectively. They are defined to have 
units of length. If the usual physical values of these quantities are written M,J,Q then we 
have,  
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In the case of an electron, say, which has 2/J , we find,  

361088.4q m, 581075.6m m, 131093.1a m 

(in metres) and hence aqm so that a classical electron would have a naked 
singularity1.  

The electromagnetic 4-vector potential consistent with the Kerr-Newman solution is,     
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[see, for example, Misner, Thorne and Wheeler (1973)] where the bar denotes the 1-form 
A  and the exterior derivative d . Care is required in interpreting the electric and 
magnetic field components. In Boyer-Lindquist coordinates the covariant components of 
the field rrt EF and EF t

 

are generally written,  
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1 Note that any point particle with spin has a naked singularity if its mass is less than 
G

c

2
= 1.54 x 10-8 

kg = 15 g. This fate is avoided by normal matter since, at (say) the density of water, such a mass would be 
of macroscopic size, namely a cube of side 0.25mm. But, with a reasonable angular momentum, the 
geometric spin, a , will be much smaller than this. Since the source occupies a much greater spatial region 
than a , the point source Kerr-Newman solution is not applicable. To make the geometric spin exceed 
0.25mm for a mass of 15 g requires an angular momentum exceeding 0.001 kgm2s-1. Since the moment of 
inertia of such a mass is ~2 x 10-16 kgm2, a rotational rate of ~5 x 1012 cycles per second is needed, resulting 
in an edge velocity which would exceed the velocity of light. So a naked singularity is effectively vetoed 
for matter of familiar density.   



However, it is immediately apparent that there is something funny about BLE because the 
dimensions are not as expected (the electric field usually has dimensions charge/length2). 
This is because it has been defined with respect to d  rather than the more usual unit 
vector with unit length. In spherical polars in Euclidean space the appropriate unit vector 
would be dr . Here we interpret the spatial part of the Boyer-Lindquist coordinates as 
an ellipsoidal coordinate system which are related to a Cartesian system as follows, 

cosrz , sin22 ra , cosx , siny         (6) 

Of course, zyx ,, is not really a Cartesian system, since the underlying spacetime is 
curved. The Boyer-Lindquist unit vector in the -direction is thus,    
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If we interpret z, as orthogonal unit vectors, the Boyer-Lindquist BL therefore does not 

have unit length. A true unit vector is provided by normalising BL as follows,    
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The result is that we must divide BLE by to get the correct component for our purposes, 
hence,  
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3. Plots of the Electric Field Vector 

Axisymmetry means that we need only consider the ,r  plane.  

Figures 1 and 2 show depictions of the directions of the electric field. These plots used 
1qa . The two plots are nominally the same, merely the result of using two different 

software packages to do the plotting. Attempts to plot the field showing both the direction 
and the magnitude, indicating the latter by the length of the indicative arrows, were 
unsatisfactory. The reason is that the strong singularity at the ring causes all the vectors 
away from the ring to appear as dots. Consequently Figures 1,2 show only the direction 
but not the magnitude of the electric field. This is sufficient for our purposes.  

These Figures clearly illustrate, 

 

The field lines emanate from the ring, implying that there is a line-density of positive 
charge on the ring; 

 

The field lines terminate on both the upper and lower faces of the disc, implying that 
there is a surface density of negative charge on both disc surfaces; 

 

At large enough radii the field lines begin to approximate that of a positive point 
charge (turning towards the radial direction).. 



The charge is therefore both on the ring and on the disc, but with opposing signs. It is 
clear from the Figures that the charge seen at infinity is less than the charge on the ring 
due to partial cancellation by the negative charge on the disc surfaces.  

What is the ratio of the charge on the ring to that seen at infinity? This is addressed next. 

4. The Charge on the Ring and the Disc Separately 

The algebraic sum of the charges on the ring and the disc equals the charge seen at 
infinity, which is q. But what are the charges on the ring and the disc separately? To 
evaluate this we note that Gauss s theorem tells us that the charge on a surface is given in 
terms of the normal component of the electric field by, 

Charge = 4/AdE         (10) 

(where bars here denote 3-vectors). We are interested in integrating over the surface of 
the disc, at which the normal component of the electric field is the value of rE with r = 0, 
i.e.,     
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The area element of the disc can be derived as follows. The volume element is given by,     
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where g is the determinant of the covariant metric tensor, (1). This gives,     

sin2g          (13) 

Now the radial thickness of this volume element can be obtained by setting all 
differentials other than dr to zero in (1), which gives,    

Radial thickness = drdrgds rrr
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Dividing the volume element by the radial thickness gives the area element since 
dAdsdV r . Hence,     

dddA sin         (15) 

On the disc, r = 0, this becomes,     

ddqaadA sincos22        (16) 

Since there are no dependencies we can consider just the annular area element,     

dqaadA sincos2 22        (17) 

Note that this differs from the Euclidean area element, daddA cossin22 2 , 
only by a constant factor.  

But substitution of (11) and (17) into (10) gives the charge on the disc to be, 
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(noting that the two surfaces of the disc introduces a factor of 2). But the integral in (18) 
is divergent at the ring, i.e., at 2/ , since the integral of tan is coslog . 

We conclude that the total charge on the disc is  due to the divergent contribution 
from near the ring singularity.  

Since the total charge is finite it follows that the charge on the ring must be . This 
may be confirmed as follows. Consider a torical region of small minor radius around the 
ring. Its area element is again given by (15). Consider the section of this toroid defined by 

a . By (6) this gives cossin ar . Hence, since we will be considering 0r  it 
suffices to consider 2/ . But using 2/  in (15), and also for 0r , we get the 

area element dqar 222 . This establishes that the area element if proportional to r

 

for small r . But the electric field, (5), for 0r  is just 2/ rqEr . Consequently the 

total flux out of the small toroid is given by the integral of drqqar 222 /2 , 

which is divergent as 0r , but positive this time.  

The finite charge seen at infinity is therefore due to a cancellation of two divergent 
quantities to leave a finite difference, namely q.  

5. Analytic Expression for the Charge Density 

The charge density is the time component of the current vector, . The 4-vector current 
equals the covariant divergence of electromagnetic field tensor,     
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The covariant components of the electromagnetic field tensor are given in terms of 
Boyer-Lindquist coordinates by,     
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Using (20a-d) together with the explicit expression, (1), for the metric tensor, it is 
merely a matter of algebra to form the divergence of the contravariant electromagnetic 

field, (19), and hence to find the current. Performing this algebra by hand is tedious, to 
put it mildly. However, it is accomplished very easily using s computer algebra package 
which has GR facilities pre-coded. Hence it can be confirmed that  is in fact 
identically zero.  

Consequently, we conclude that the charge density is everywhere zero in the Kerr-
Newman solution. This does not mean that there is no source, however. The same result 



would be found for the field of a static point source ignoring gravity, 2/ rqEr , i.e., the 
(ordinary) divergence of this field appears to be identically zero. More correctly these 
fields may fail to have finite divergence at isolated points, lines or surfaces, and it is at 
these locations that the sources may be located. Nevertheless, in the case of the Kerr-
Newman field there is a sense in which there really is no source.  

6. The Topology of the Field Lines in the Maximally Extended Spacetime 

Figures 1,2 show only half the complete spacetime, namely that half which has r > 0. 
There is another region with r < 0 in which the electric field looks identical to Figures 1,2 
except that the direction of all the arrows is reversed. Thus, in the r < 0 region, the lines 
of force emerge from the disc, rather than appearing to end on the disc. In other words, 
the charge density on the disc in the r < 0 region appears to be positive. Similarly, the 
ring in the r < 0 region is a sink for the field lines, thus appearing to be a negative charge.  

The r > 0 and r < 0 regions are joined together at the disc. The upper face of the disc in    
r > 0 is identified with the lower part of the disc in r < 0, and vice-versa. With this 
topology we see that, in reality, the field lines do not terminate on the disc at all but 
simply cross over continuously from the r> 0 region to the r < 0 region or the reverse. 
There is no charge on the disc because the field lines are continuous and do not terminate 
or emerge from it. The appearance of a surface charge density was an illusion brought 
about by confining attention to only part of the whole spacetime.  

The same phenomenon occurs at the ring. It appears that field lines emerge from it when 
considering the r > 0 region in isolation. But in the r < 0 region, the same number of lines 
of force enter the ring. In fact, the lines of force are continuous and merely cross over 
from the r < 0 region into the r > 0 region. 

An observer at r

 

sees flux lines and concludes that there is a charge near 0r . 
But actually the lines of force he sees have merely originated at the other spatial infinity, 
r , travelling by way of 0r  and giving the illusion of a charge. If it made physical 
sense we could consider imbuing the maximally extended spacetime with a particular 
topology such that r and r  are identified. All the lines of flux would then be 
continuous closed loops, with no source anywhere.   
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Figure 1: Plot Showing Directions of Electric Field Vector Only (Not Magnitudes)   

  



Figure 2: Alternative Plot Showing Directions of Electric Field Vector Only (Not Magnitudes)  
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