
  
Chapter 35 

The Algebraic Hydrogen Atom 

The energy levels of the non-relativistic hydrogen atom can be derived without 
solving for the associated states by making use of the Runge-Lenz vector which we 

met in the solution to the classical Kepler problem in Chapter 15. This magical 
vector also provides us with ladder operators which generate states of differing 

orbital quantum number l but the same principal quantum number, n . 
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We want to find the energy levels of the non-relativistic hydrogen atom Hamiltonian,      
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where 2e is the electron charge (possibly factored by 04/1 , depending which units 
you prefer). Following Chapter 15 we introduce the Runge-Lenz vector, now in 
operator form,     
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where the angular momentum operator is,      
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An explicit form for the momentum operator, p , such as its representation in the 

spatial basis as i , need not be specified. Instead we just need its commutation 
properties,   

0, ji xx and 0, ji pp and ijji ipx ,  (4) 

The commutators involving L  and M  can then be found (simply, if tediously). The 
result has already been given in Chapter 15,      
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0,, HLHM     (8) 

Equ.(8) corresponds to L  and M  being constants of the motion (see Chapter 15). In 
the context of the Kepler problem, M  lies in the plane of the orbit whereas L  is 
perpendicular to the plane of the orbit. Correspondingly we find that the operators 
obey,     
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Finally, the counterpart of the classical expression for the square of the Runge-Lenz 

operator, 222 2
KL
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M , where GMmK  is the constant in the Newtonian 

gravitational force law, can be derived to be,     
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I suspect 222 2
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E
M  was not derived in Chapter 15 and so needs to be 

(maybe). Really need to check that all the algebra herein does work  I have never 
done so  including (10). Need to review the use of GMmK  in view of possible 
confusion with use of K as an SU(2) operator.  

We now confine attention to, 

 

a degenerate sub-space of Hilbert space for which all states have the same 
energy, E ; 

 

bound states so that 0E .  

So long as we confine attention to this sub-space we can replace the Hamiltonian 
operator on the RHS of (7) simply with E and we can normalised the Runge-Lenz 
vector operator such that,     
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So that (5-7) become,     
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The substitution,     
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leads to a simpler set of commutators,     

njknkj NiNN ,               (16) 

njknkj NiNN ,               (17) 

0, kj NN                (18) 

So the algebra decomposes into two closed but independent algebras, one for N  and 

one for N , these two sub-algebras being identical and equal to the Lie algebra of the 
Lie group SU(2)  the universal covering group of the group of rotations in 3-
dimensions, SO(3), and the group of the (non-relativistic) Pauli spinors. The utility of 
this is that we already understand the eigenvalue structure of the algebra of SU(2) 

from considerations of angular momentum, see Chapter 32. Denoting NNN 2 

the eigenvalues are, 



  
22 1nnN and 22 1nnN             (19) 

where n  take half-integral values 0, ½ , 1, 3/2 , 2, 5/2, Now it follows from (15) 
that,  
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But from (9) the second of (20) gives 22 NN , so in this particular application (the 
hydrogen atom) we require nn . Hence the first of (20) becomes, 
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But from (10) we have, 
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So that (21) becomes, 

22
24

14
2

nn
E

mce  
                       (23) 

Hence,    22
24

12
2

n
E

mce 
                             (24) 

Hence,    
2

22

22

24

2

1

122 n

mc

n

mce
E

 

                                   (25) 

where     12nn                (26) 

Equ.(25) is the familiar non-relativistic solution for the energy levels of a hydrogen 

atom, where /2e  is the fine structure constant and n  is the principal quantum 
number, which, since n  takes half-integral values 0, ½ , 1, 3/2 , 2, 5/2, we see that n

 

takes integral values 1, 2, 3, 4, 5  At the same time that Schrodinger (1926) was 
deriving this result from the equation which was later to bear his name, Pauli derived 
it by the above method, Pauli (1926).  

The conversion of (12-14) to (16-18) by the substitution (15) will seem eerily familiar 
to those who are acquainted with the finite representations of the Lorentz group, 
SO(3,1). Indeed exactly the same commutator structure (12-14) can apply for the 
Lorentz group if the generators are chosen to be Hermetian. For the Lorentz group it 
is more common to choose the generators of the boosts as anti-Hermetian, which is 
equivalent to replacing our M with Mi . Equs.(12) and (13) are unchanged whereas 
(14) acquires a minus sign on the RHS. However if we stick to the Hermetian 
generators, as in (12-14), then a six-parameter group of unitary elements is defined 
by,     

MiLiU exp                         (27) 

where  and  are each real 3-vectors. The group elements (27) are unitary by virtue 

of L  and M  being Hermetian, which follows from (2,3). In contrast, the six-
parameter group defined by elements, 



    
MLiV exp                         (28) 

is not unitary. The rotations, Liexp  are unitary, but the boosts, Mexp , are 
not. A representation of the generators as 4 x 4 matrices is, 
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From these it is easily confirmed that the unitary group elements, (27), leave invariant 

the 4-dimensional Euclidean metric 2222 zyxw  whereas the non-unitary group 

elements (28) preserve the Minkowski metric 2222 zyxt . There is a more 
fundamental reason why the representation (28-30) of the Lorentz group is not 
unitary. There is a general theorem that non-compact Lie groups have no finite unitary 
representations. And the Lorentz group is non-compact because, as a result of the 
signature of the Minkowski metric, a boost which preserves this metric can be 
repeated indefinitely without reproducing a group element.  

I have not addressed the ladder operators
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