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Chapter 31 

If the Universe is Expanding Why Can I Never Find a Parking Space? 

No, it s not because your car is getting bigger too. 

Last Update: 29/1/12  

It is likely that anyone who has thought about universal expansion at all has, at some 
time, been puzzled by this: why is the solar system not expanding also? Indeed, why is 
the Earth itself and objects on a still smaller scale, including your own body, not 
expanding? It would be silly to imagine that everything was expanding in proportion. 
Such an expansion would not be detectable, and hence would be inconsistent with the 
observed cosmic expansion. Cosmic expansion means that the ratio of the size of the 
observable universe to the length of the metre rule in my tool box is increasing. But the 
ratio of the size of the solar system (or the Earth) to my metre rule is not increasing  not 
due to cosmic expansion, anyway. (Of course the orbits of the planets are no doubt 
varying slowly for purely local reasons).  

My first thought on this problem was that the Jeans mass (or Jeans length) would be 
relevant. Actually it is not. Masses or regions exceeding the Jeans scale may 
gravitationally collapse without benefit of a cooling mechanism. However, gravitational 
collapse can occur on smaller scales provided that there is a cooling mechanism. This is 
what leads to star formation. At mass/size scales either greater or less than the Jeans scale 
gravitationally bound systems can occur, and it is their bound nature which is significant 
in neutralising the effects of cosmic expansion locally.  

In fact the binding need not be gravitational. Take a single atom, for example. The size of 
a hydrogen atom is set by the Bohr radius,      
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This is derived by solving the Schrodinger equation. If it were true that cosmic expansion 
was causing atoms to become larger, and if we retained our local dynamics (i.e., the usual 
Schrodinger equation), we would be forced to conclude that at least one of the universal 
constants ,,eme  was changing (noting that 0  just determines the units used for 

charge). It is physically fairly obvious that the cosmic expansion will not affect atomic 
size simply because the electrostatic force which binds atoms is so very much stronger 
than the gravitational force (by a factor of 3910~  ). The same applies to rocky planets, for 
the same reason: solids are bound by chemical bonds which are electrostatic in nature.  

However if we consider a sufficiently large piece of the universe we must eventually get 
to a scale which is expanding. To investigate where the boundary between local non-
expansion and global expansion lies we shall follow the simple approach of Price and 
Romano (2012). These authors considered a classical atom under the influence of 
cosmic expansion. That is they considered a charge in the attractive electrostatic field of 
an opposite charge together with a force equivalent to the influence of cosmic expansion, 
treating the problem classically. In the non-relativistic case we might just as well regard 
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the attractive electrostatic force as replaced by a gravitational force. Ignoring the cosmic 
expansion for a moment, the equation of motion is,       
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where GMC and M  is the mass at the origin causing the gravitational attraction 
experienced by our trajectory particle. Being a central force the angular momentum is a 
constant of the motion (see Chapter 15),     
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where L  is the angular momentum per unit trajectory mass and  is the angular 
coordinate subtended at the origin in the plane of motion. The radial part of the equation 
of motion reduces to,      
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The second term on the RHS being simply the usual centrifugal acceleration often 
denoted 2r , where .  

How are we to incorporate the effects of cosmic expansion into the equation of motion?  
The expansion can be written,      
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Here R  is the radial coordinate embedded in the Hubble flow. A particle which was co-
moving with the cosmic expansion would have a constant R coordinate. Its r coordinate, 
on the other hand, would be increasing, 0a . The acceleration of a co-moving particle 
as seen in the local r-coordinate frame would be,      
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In order to reproduce this acceleration in the r-coordinate when distant from the source of 
gravity at the origin, Price and Romano suggest that it is plausible to replace the equation 
of motion (4) with,      
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The last term can be interpreted as the outward tug on the particle due to the cosmic 
expansion. You might reasonably be concerned about this ad hoc adjustment to the 
equation of motion. However Price and Romano show via a fully relativistic treatment 
(i.e., the Friedman equation) that it is valid in the non-relativistic limit. 

We are not particularly concerned about what the actual cosmic expansion, i.e., the 
function ta , might be. The principle regarding whether or not our test particle shares the 
expansion is presumably not strongly dependent upon the specific expansion function. A 
simplification is achieved by assuming an exponential expansion rate, 
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Such a de Sitter cosmology might actually apply during an inflationary epoch, or at times 
such that dark energy has become dominant. However its appropriateness for our 
universe is not really the issue. Substituting (8) into (7) gives an equation of motion with 
no explicit time dependence,      
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This is analogous to motion in a potential which depends upon the radial coordinate r 
alone. The energy (per unit trajectory mass) is,    
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where V  is an effective potential including the influence of cosmic expansion. The 
equation of motion, (9), is readily seen to imply that this energy is a constant of the 
motion, and vice-versa.  

Ignoring the cosmic term for a moment, and considering circular motion of radius a , 

Equ.(3) relates the period of the motion, pT , to the angular momentum pTaL /2 2 . But 

for circular motion 0rr  so that (4) gives us CLa /2 . Hence we get the period of the 
motion, unperturbed by any cosmic influence, in terms of L  and C ,      
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Define a dimensionless coordinate and dimensionless potential by,    
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The dimensionless potential is thus,      
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where,     
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Since the dimensionless coordinate r~  is of order unity, it is clear from (13) that the 
cosmic expansion will have little influence on the local motion if 1. From (14) it 
follows that this condition is met so long as the local dynamical timescale is short 
compared with the age of the universe (which also determines the universal expansion 
rate). This is not an onerous requirement! So without further detailed analysis it is fairly 
clear that universal expansion will affect dynamics only at the largest scales, for which 
evolution is on a similar timescale to that of the universe as a whole.  
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This can be examined a little more closely by considering the qualitative form of the 
potential function, (13). It is plotted for several values of  in Figure 1. The turning 
points can be found by equating the derivative of (13) to zero, giving,      
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Figure 1 Plot of the dimensionless potential function, Equ.(13), against 
dimensionless radial coordinate for various values of 
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Hence, for 0 , when there is no cosmic influence, the minimum is at 1~r  and has the 

value 5.0
~
V .  

For 25.0

 

the minimum is at 087.1~r  and has the value 534.0
~
V . This case also has 

a maximum at 2~r  and has the value 5.0
~
V . 

The minimum and maximum of V
~

move closer together as  is increased, ultimately 
merging into a single point of inflection. This point can be solved by equating the second 
derivative of V

~
to zero, i.e., the derivative of (15), 0~41 32r , simultaneously with 

(15). This gives 3/4~r  and,      
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For crit  there is no turning point of V
~

.  

These qualitative features of the potential function allow us to discern simply the 
dynamic behaviour of our test particle. For any case with crit , and hence with a 

minimum in V
~

, suppose the initial condition is that the particle has zero radial velocity 
and is at a point 0r  such that max0

~~
VrV  where max

~
V  is the maximum turning point. The 

subsequent motion can be visualised as akin to a marble released from 0r  in a container 

with the shape of rV ~~
. The marble rolls backwards and forwards between points 0r  and 

1r  where the latter is such that  01
~~

rVrV . The actual motion is in a roughly elliptical 
orbit, where 0r  and 1r  are the semi-minor and semi-major axes. In the case that the 
starting point is at the minimum of the potential, the radial coordinate remains constant 
and the orbit is a circle.  

The detailed trajectory of the particle will inevitably be affected to some degree by the 
cosmic expansion, i.e., by the -dependent term in the equation of motion. However for 

crit , and for the starting conditions described above, the important conclusion is that 
there is a fixed constant orbit which does not expand over time. The particle trajectory 
does not share the cosmic expansion at all. The local gravity wins over the cosmic term. 

However, if crit  there is no maximum or minimum of the potential. In this case the 
cosmic term wins over the local gravity and there is no orbital behaviour. The marble 
drops down the infinite slope in Figure 1 and disappears to infinity, i.e., our particle 
expands with the universe.  

This simple illustration shows that what does not happen is that we get an almost closed 
stable orbit which slowly expands under the influence of the cosmic expansion. Instead 
its all-or-nothing: there is either a fixed, constant orbit which does not expand, or the 
particle becomes entrained in the Hubble flow and does not orbit at all.  

The parameter  can also be expressed as a ratio of densities. For a uniform density of 
material, , the period under the action of the local gravity alone is,      
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The age of the universe in terms of the critical density, c , is,      
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Hence (14) becomes,      
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(19) 

The critical density is equivalent to less than 6 hydrogen atoms per cubic metre. 
Consequently for all but the largest structures in the universe it is clear that we will easily 
be within the regime 3248.0crit . For example, despite the remarkably low mean 
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density of a typical galaxy (perhaps only ~10-20 kgm-3, due to the sparsity of stars within 
the galactic volume) it is still about 6 orders of magnitude greater than the critical 
density. We conclude that galaxies will not be expanding with the universe.  

However, at the level of galactic superclusters this changes. At this scale it is no longer 
clear that we are in the  crit  regime. This is as it should be because superclusters 
must share the cosmic expansion. The largest scale structures in the observable universe 
are vast bubbles of almost completely empty space. Cosmic expansion consists of all  
these voided bubbles inflating further. The superclusters are the bubble boundaries . 
Consequently, cosmic expansion can be envisaged as these bubble walls, the 
superclusters, being stretched more and more. At this scale, matter is affected by the 
cosmic expansion. The overwhelming majority of the mass of superclusters resides in the 
galactic clusters and groups of which they are composed. These are generally taken to be 
the largest gravitationally bound structures in the universe. What is not clear (to me) is 
whether galactic clusters are affected by the cosmic expansion, since their mean density 
is also very low. However their gravitationally bound nature suggests not.  

In conclusion, cosmic expansion would help you with your parking problem only if your 
car park were comparable to a supercluster in size, ~100 Mpc.  
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