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1. The EPR Paradox 

Einstein famously did not like the indeterminacy of quantum mechanics. He felt the 
theory was incomplete. The paper by Einstein, Podolski and Rosen (EPR, 1935) 
purported to show that either quantum mechanics was incomplete or that relativistic 
causality was violated. The essence of the argument, though not expressed in this way by 
EPR, is captured as follows.  

Suppose an atom or particle with zero angular momentum decays into a pair of particles 
which have two spin states, such as spin ½ particles with mass, or alternatively massless 
spin 1 particles. These particles then move away from each other at great speed. Suppose 
also that due to some selection rule, or by some other means, we know that the pair of 
particles are created in an S-wave state, i.e., without orbital angular momentum. It 
follows that the particles spin state must be the singlet state of spin zero, which we can 
write as 

21212

1 . This means that, as we would have expected, if we measure 

particle 1 to be spin up then we will certainly measure particle 2 to be spin down , and 
vice-versa. But we have no way to tell in advance of an individual measurement which of 
these two outcomes will be found.  

So far there is no problem apparent. The difficulty occurs when we note that the 
measurements on the two particles can be arranged to be at a spacelike separation, so that 
no causal connection between them is possible. But quantum mechanics would have us 
believe that before the measurement on particle 1, the spin state of particle 2 is a 
superposition of both spin up and spin down  as indicated by the Hilbert state 

21212

1 . And yet, after the measurement on particle 1 has been carried out, 

which could result in either an up or down spin, the outcome of a measurement on 
particle 2 becomes determined despite no causal connection between them being 
possible. EPR argued that either a faster-than-light interaction occurs or quantum 
mechanics must be incomplete. The implication appears to be that there must be some 
hidden variable carried by each particle which determines the spin that will be 

registered for each particle separately. Otherwise how could the second particle contrive 
to always have the opposite spin to the first, if the spin of the first were not decided until 
it is measured and that measurement is at a space-like separation from the measurement 
on the second particle? On the face of it the argument s a good un  an Einstein special.  

2. Hidden Variables  The Algebraic Years 

The counter to EPR from the likes of Bohr and Born was that, in fact, there is no 
violation of causality and hence that quantum mechanics is unobjectionable. The reason 
is that the correlation between measurement outcomes at the two spacelike separated 
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events cannot be used to send any information. So nothing acausal happens. If one were 
able to influence the outcome of the measurement of particle 1, then this would constitute 
an acausal connection with particle 2, since it would provide a means of faster-than-light 
communication. But the point is that the very indeterminacy of the measurement of 
particle 1 prevents any such signalling to particle 2.  

If you are not comfortable with this counter-argument, you are in good company. The 
EPR paradox has been the subject of intense debate for over 75 years now. However, the 
existence of hidden variables is even less credible as the resolution of the paradox now 
than in 1935.  

For several decades after the dawn of quantum theory, the Copenhagen interpretation was 
dominant. In part this was due to the patriarchal influence of Bohr. But the Copenhagen 
interpretation was also buttressed by von Neumann s purported proof that hidden 
variables could not exist. This proof was published in 1932, before the EPR paper, so 
either EPR were unimpressed by it, or else they were unaware of it. The latter seems 
unlikely, although Einstein had other things on his mind in the period 1932-35, such as 
fleeing from Nazi Germany and his wife s ultimately fatal illness. Von Neumann s 
proof is fatally flawed, as pointed out by Bell (1966), as well as by other people much 

earlier. It is worth examining what went wrong with it. Rather than reproducing von 
Neumann s original proof we shall use the much simpler argument of Bell (1966) based 
on the same false premise.  

The false premise is that the expectation value of a linear combination of observables 
equals the same linear combination of their individual expectation values. Expressed 
algebraically, QbPabQaP . In other words, expectation value is a 

homomorphism. Quantum mechanics has this property, of course, because it is simply a 
re-writing of the linearity of the Hilbert space operators. But von Neumann imposed this 
condition on the hypothetical hidden variable theories as well. Now it is easy to show via 
a counter-example that this eliminates deterministic (i.e., hidden variable) theories. 

Consider a spin ½ particle and the observable Q , where are the Pauli matrices 

and is an arbitrary real 3-vector. Upon measurement, this observable1 can only take the 

value  or , where 2
z

2
y

2
x . For a given fully specified state, if a 

deterministic theory existed then the expectation value would either be  or 

 

depending on the state, since one or other of these results would be definite. But this 
contradicts the homomorphism requirement, since this requires that the expectation value 

                                                

 

1 This observable must be understood to mean, measure the spin in direction . If you insist on 

expanding in terms of a sum over its x, y and z components then you will have trouble seeing what 

the possible measurement outcomes might be. This is because the eigenvectors of the sum are not 
eigenvectors of any of the three terms (in general), because the three terms do not commute. Actually, this 

is precisely the point being made. The possible measurement outcomes are the eigenvalues of  which 

are given by 0
zyx

yxz

i

i
which readily yields 
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be linear in each component of , namely Q . Von Neumann concluded that 

deterministic states, i.e. hidden variables, could not exist. This was an unjustified claim. 
Whilst it follows rather trivially from QbPabQaP , this is an unreasonable 

restriction. Actually what von Neumann demonstrated was that, if deterministic, hidden 
variable, theories existed, then their expectation values for fully defined states could not 
respect this homomorphism property.  

Bell (1966) demonstrated that there was no call to assume that deterministic states with 
specified hidden variables would obey the homomorphism property. He constructed a 
simple deterministic model in terms of a hidden variable  which always produced one of 

the outcomes  or  on measurement, and hence clearly violated the homomorphism 

condition as regards expectation values for fully specified states, i.e. for a given value of 
. But, on averaging over all possible values for , results for the expectation values in 

agreement with quantum mechanics were obtained. Thus, the homomorphism property 
holds once the hidden variables have been averaged-out. Writing the quantum state 
as , and the deterministic state in the hidden variable theory as , , then, 

Quantum mechanics: s , where s is the real vector s        (1) 

Hidden variables: -or  ,,  depending on 

   

       (2) 

but,   sd,,

     

       (3) 

Bell (1966) gives an explicit deterministic rule for choosing the sign on the RHS of (2) 
for a given state, including the value of . From this the result (3) is shown to follow. 
Hence the hidden variable theory agrees with quantum mechanics, in the limited sense of 
reproducing (3), despite having deterministic outcomes, (2), for individual measurements. 
[NB: It may look odd that the RHS of (3) is in terms of the spin direction, s , because this 
information seems to have been lost on the RHS of (2). However, s is actually codified in 
the choice of sign on the RHS of (2)].  

Do not get the wrong idea. This is not a viable hidden variable theory. We shall see 
below that there is no local hidden variable theory which can reproduce all the 
predictions of quantum mechanics. What Bell achieved with the above model was a firm 
refutation of von Neumann s argument for the non-existence of hidden variables. 

In the 1966 paper Bell also discusses alternative algebraic proofs that hidden variable 
theories cannot exist, due to Jauch and Piron (1963) and a corollary of a result by 
Gleason (1957). He shows that both of these suffer from a similar defect. Innocent 
looking algebraic conditions are assumed to hold for the candidate, deterministic, hidden 
variable theories which are unduly restrictive. These conditions hold in quantum theory, 
and hence are required to hold for averages over the hidden variables, but there is no 
reason to assume they hold for fully specified deterministic states (i.e., for specified ). 
On the contrary, there are physical reasons why this should not be expected, as Bell 
discusses.  
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In 1967, Kochen and Specker proved a truly remarkable theorem. Assume that 
observables can be represented by self-adjoint operators in Hilbert space. Assume that a 
unique number, the possessed value , can be assigned to every observable, Q. Call it 
Value(Q). So this is effectively saying that there is a deterministic underlying theory. And 
finally assume that taking the Value commutes with functions, 

)()( QValuefQfValue . Kochen and Specker then showed that, for Hilbert spaces of 
dimension greater than two, these assumptions would result in a contradiction. In other 
words, it is not possible for self-adjoint operators on Hilbert space to be assigned unique 
numerical values which also respect the functional composition property 

)()( QValuefQfValue . For the proof see Kochen and Specker (1967) or alternatively  
Redhead (1987). 

3. Bell s Inequality and the Experimental Refutation of Hidden Variables 

Curiously, Bell s demolition of the algebraic proofs against hidden variables paved the 
way for what became a far more convincing refutation. He derived an inequality 
involving measurement outcomes which any local, deterministic hidden variable theory 
must obey but which is not obeyed by quantum mechanics. Thus the experimental 
confirmation of the quantum mechanical prediction provides a refutation of all local 
deterministic hidden variable theories. Ultimately hidden variables have been killed (or at 
least fatally wounded) by experiment.  

Bell (1964) considered the EPR situation, as described above. A pair of spin ½ particles 
emerge from the decay a spinless precursor, and hence in the singlet state. Bell envisages 
the spin of one particle being measured in a direction given by unit vector a , and the spin 

of the other particle being measured in direction b . These vectors can be oriented 
arbitrarily in 3D space. At issue is the correlation between the two spin measurements, 
for which it suffices to consider the expectation value of their product. The quantum 
mechanical expectation value of the product is,    

abbaba cos21

    

       (4) 

In the particular case that ba  this produces an expectation value for the product of -1, 
i.e. the spins are always opposed. (NB: we are measuring spins in units of 2/ ). 

Bell argued that if the outcome of an individual spin measurement is determined by a 
hidden variable , then the first particle could be predicted with certainty to have a spin of 

1,aA

 

if  were known. Similarly, the second particle also has determinate spin, 

1,bB . The expectation value of the product of spins, averaged over many 
measurements, is thus, according to the hidden variable theory,    

dbBaAbaE ,,,

     

       (5) 

where  is some probability density of the hidden variable so that 1d .Bell 

(1964) shows that (5) is inconsistent with (4). More generally, he derives an inequality 
which must be respected by any such hidden variable theory, i.e., 
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caEbaEcbE ,,,1

     
       (6) 

But the quantum mechanical expectation value, (4), does not obey (6). For example, 

consider c

 
and a to be perpendicular with b at 45o to both. Then, assuming the quantum 

mechanical result (4), the inequality would require,    

2

1
0

2

1

2

1
1

      

But the LHS = 0.292 whereas the RHS = 0.707, so the inequality is clearly false. Note 
that it is not even a close miss. The quantum expectation value disrespects the Bell 
inequality quite radically. This is important because it means that experiments to 
discriminate between the two need not necessarily be of very great precision. 

The proof of Bell s inequality, (6), is remarkably simple. Any theory must predict that the 
two particles have opposite spins when measured in the same direction since this is 
required by the conservation of angular momentum. Hence we have,     

,, aAaB

     

       (7) 

So that (5) becomes,  dbAaAbaE ,,,

   

               (8) 

Hence, 

dcAbAbAaA

dcAaAdbAaAcaEbaE

1,,,,                          

,,,,,,

 

       (9) 

because 1,
2

bA . But the value of ,, bAaA  can only be 1 so that (9) implies, 

dcAbAcaEbaE ,,1,,

  

     (10) 

Using (8) this gives,  cbEcaEbaE ,1,,

    

     (11) 

which is Bell s inequality, (6). QED. 

Stronger inequalities than (6) have now been proved also, and forms of inequality which 
are better suited for certain experimental arrangements. However, (6) suffices to 
demonstrate the force of the strategy which permits experiments to refute local 
deterministic hidden variable theories rather than algebra alone. 

The literature on Bell-type inequalities is large, as is the number of experiments to test 
such inequalities. The purist would claim, quite rightly, that the conclusion from these 
experiments is not strictly conclusive. Experimental loopholes exist through which local 
realistic hidden variable theories might still escape final discreditation. However 
experiments are constantly restricting the wriggle room more and more. The large 
majority of experiments violate a Bell-type inequality and are consistent with quantum 
mechanical expectations. Those few experiments which are exceptions have tended to 
come under suspicion of inaccuracy or have not proved reproducible. Although now 
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rather out of date, Redhead (1987) presents a Table of experimental tests. Despite the 
loopholes, few people now expect local realistic hidden variable theories to survive.  
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