
Chapter 28 

Sins of Intention 

Can a Null Measurement Collapse the Wavepacket? 

Last Update: 9/1/12  

The term null measurement refers to an experiment which includes an active 
measuring device but in which the device registers no measurement.  Can a null 
measurement collapse the wavepacket? The answer is yes , though it may be only a 
partial collapse. Note that wavepacket collapse by a null measurement is essentially 
identical to decoherence without an associated change in the state of the environment 
(which is illustrated in Chapter 22). The only difference is that the environment is 
being regarded as a measuring device. Hence if its state does not change then it 
registers no measurement. The principle is so important that it bears repeating in this 
different guise. These phenomena are also closely related to the observability of 
counterfactuals, as illustrated in Chapter 8 by the Elitzur-Vaidman bomb test and the 
possibility of counterfactual computation. Indeed, a null measurement is a 
counterfactual.  

The gedanken experiment to be considered has been attributed to Renninger, Ref.[1].  
Suppose the decay of a radioactive nucleus gives rise to a particle (or radiation) in a 
spherically symmetric state. The particle may be emitted in any direction with equal 
probability. Imagine that we have arranged a large number of particle detectors 
around the surface of some sphere of radius R, with the radioactive source at its 
centre. For simplicity we shall assume the detectors cover all 4 steridians of solid 
angle and are 100% efficient, so that we can guarantee that an emitted particle will be 
detected in one of them. The spherically symmetric wavefunction representing the 
emitted particle can be considered as the sum of a large number, N, of isotropically 
disposed plane waves,      
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(see Appendix). Note that the phase relationship between the contributing plane 
waves in (1), namely no phase difference, is crucial to the sum being equivalent to a 
spherical S-wave. The individual states in (1) are normalised to Nuu ii /1

 

and are 

orthogonal so that (1) represents just one particle.  

The detectors can be considered as two-state devices, registering 0 when no particle 
has been detected or 1 when a particle has been detected. Since we shall consider only 
one particle to be present at a time, at most one detector can register a particle before 
the whole apparatus is reset (prior to a subsequent event). The state of the set of all 
detectors is therefore written ei  where 0i  means that no detectors have yet 

registered a particle, whereas 1i  means that detector 1 (only) has registered a 
particle, 2i  means that detector 2 (only) has registered a particle, etc. Moreover we 
have labelled the detectors so as to correspond to the labelling of the plane waves in 
(1), so that plane wave No.1 propagates into detector No.1, etc. 



Suppose that the particle is emitted at time 0 and that it takes some time 1t  for the 
particle to travel from its source to the detectors. Then for times 10 tt  the state of 
the combined particle-plus-apparatus is,      
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because the particle and the detectors have not yet had opportunity to interact. The 
reduced density matrix of the system is trivially just the system s density matrix at 
this time since there is only one environment state to trace out, and it is given by,    
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In matrix notation the density matrix is thus,     
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where N is the dimension of the matrix, i.e., the number of detectors and the number 
of terms in Equ.(1). The off-diagonal terms in (4) are witness to the coherence of the 
initial state.  

At time 1t , when the interaction has occurred, the state evolves into,     
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The density matrix representing the combined particle-plus-apparatus is thus,    
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The reduced density matrix representing the particle alone is obtained by tracing out 
the environment states, which here are represented by the detectors themselves. 
Hence, 
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(7) 

See how different is (7) from (3). There are no longer any diagonal components. In 
matrix notation we have,     
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Entanglement with the environment followed by tracing out the environment states 
results in decoherence. The particle is now in a classical mixed state. The transition 
from (4) to (8) is part of what is referred to as the collapse of the wavepacket. (The 
other part is the selection of one the particular states or detectors).  

So far, so good: this is just standard decoherence theory. Things get more interesting, 
though, if the apparatus is modified by moving one hemisphere of detectors to a 
different radius. We now consider the left hemisphere to be at a radius 1R , with a time 
of flight 1t , but the right hemisphere is at a radius 12 RR  with time of flight 12 tt . 
The initial state, that is for 10 tt , is still as given by (2-4). Similarly, the final state 
for 2tt , is still as given by (5-8)1. The question is: what is the state of the particle 
for 21 ttt , after interaction with the left hemisphere has happened, but interaction 
with the right hemisphere has not yet happened? 

The question is addressed by considering separately the sums over states/detectors in 
the left and right hemispheres. At the time in question, 21 ttt , the unitary 
evolution of the initial state has brought only left hemisphere particle states into 
alignment with left hemisphere detectors, whereas right hemisphere states are still 
associated with the null reference state of the detectors, i.e.,    
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where the first sum on the RHS of (9) is over the left hemisphere whereas the second 
sum is over the right hemisphere. The density matrix representing the combined 
particle-plus-apparatus is thus,    
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Tracing out the environment states now means summing not just over ...3,2,1, iei 

but also including the state 0e  in the sum, since that remains a possible state of the 

detectors at this time. The second pair of terms (the cross terms) in (10) contribute 
nothing when traced out, whereas both the first two terms contribute, i.e.,    
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Hence decoherence has taken place over the states corresponding to the left 
hemisphere, whereas coherence remains for the right hemisphere states. In matrix 
notation, 

                                                

 

1 Actually this is only true in the geometrical optics approximation. It is not exactly true due to 
diffraction effects. This is discussed at the end of this Chapter. 
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where the left hemisphere corresponds to the first 2/N  components and the right 
hemisphere to the second 2/N  components. The density matrix (11,12) is the full 
description of the state of the particle at time 21 ttt  assuming that we have not yet 
looked at the left hemisphere detectors to see whether they have registered a particle. 
If they have, then the actual Liui ,  state has been found. If not, then the state of the 

particle is given by the density matrix for the remaining (right hemisphere) degrees of 
freedom alone, thus,     
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The factor of 2 is to re-establish normalisation given that the sum in (13) now extends 
only over 2/N  detectors. In matrix notation, if there is no particle registered on the 
left hemisphere the particle state becomes, 
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What does this mean? It means that with the left hemisphere present but failing to 
detect a particle, the particle state is nevertheless changed from (4) to (14). The 
wavepacket is partially collapsed in that it is now concentrated on the right 
hemisphere states. However, full coherence is retained amongst the right hemisphere 
states, in contrast to the fully decohered density matrix (8). For example, if the right 



hemisphere of detectors was replaced by a screen with a pair of slits, a diffraction 
pattern could be developed.  

Diffraction Effects 

To avoid misleading the reader we must now mention in passing that the above 
analysis is incomplete. The reason is that the presence of two hemispherical 
boundaries means that neither plane waves nor the hemispherical wave, 

2/0 :    krjetr ti
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are actually solutions to the Schrodinger equation. For example, (15a) and (15b) are 
discontinuous over their mutual boundary at 2/ . So the true solution must smear 
(15a,b) so as to produce a continuous function (with continuous derivative). In the 
optical analogy, the physically effect which causes this modification to (15a,b) is 
diffraction from the edge of the inner hemisphere. Hence the detectors near the edge 
of the outer hemisphere would record a diffraction pattern. Moreover, diffraction 
would deflect some of the particles to angles 2/  so that they would miss the 
outer hemisphere entirely. The total signal received by the two hemispheres would not 
sum to unity (there s a hole in our bucket!). The lost signal could be captured by 
putting another arc of detectors beyond the right hemisphere, thus

  

Hence the diffraction around edge A causes some particles to pass to the left of point 
B, missing the right-hand hemisphere, but these particles are captured by the 
additional detectors placed on the arc CD. Of course, there will also be diffraction 
from edge B, which will cause some particles to miss the new detectors on CD by 
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passing to the right of C. So you would really need another arc of detectors beyond 
CD (and so on, ad infinitum).  

However these diffraction effects are mentioned only for completeness. They do not 
detract from the moral of the example: null measurements can partially decohere the 
density matrix (collapse the wavepacket).  

Appendix 

The spherically symmetric S-wave solution to the free Schrodinger equation, for a 

state of definite energy, is krjetr ti
0,  where the energy is mk 2/2  and 

0j  is the first spherical Bessel function, which is actually just the sinc function, i.e., 

xxxj /sin0 . The plane wave solutions of the same energy are rkiti eetr ,  so 
that an isotropic, in-phase sum of plane waves is,  
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So the states iu  in (1) can be identified with plane waves of the same energy as the 

spherical wave (i.e., the same k), and noting that the plane waves in all directions 
contribute with the same amplitude and phase. There are therefore no expansion 
coefficients in (1). Obviously (1) becomes exact only in the limit of the subscript i 

becoming a continuous variable.  
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