
Chapter 27 

Noether s Theorem and the Origin of Spin 

The derivation of conserved quantities from symmetry is one of the most 
fundamental features of modern physics. The quantities which are conserved as a 

result of the Poincare symmetries of Minkowski spacetime are derived here. 
Amongst other things this puts spin in its proper context.   

Last Update 9/1/12  

1. What is Noether s Theorem? 

What is the greatest theorem in mathematical physics? Noether s Theorem would 
surely be one of the strongest candidates for the title. I recall the moment as an 
undergraduate when I first learnt that the conservation of energy and momentum 
could be derived from the translational symmetry of spacetime. It was one of those 
pivotal moments when you know that your understanding has just made a major leap 
forward. Such conceptual break-throughs are exactly what physicists constantly strive 
towards. Prior to appreciating the connection with symmetry, the conservation of 
energy was to be regarded as a physical Law. The connection with symmetry turns it 
instead into a mathematical theorem. It is one less thing which appears contingent 
upon how the physical world just happens to be, and one more thing whose logical 
necessity has been pinned down to a more fundamental level. This is what progress 
consists of in physics.  

Noether s Theorem does not only elucidate the conservation laws in classical physics, 
it also provides the most cogent perspective on the formulation of quantum 
mechanics. When one first comes across the correspondence tiE  and ip  

in quantum mechanics one is likely to think, For God s sake, why? But these 
operators are the generators of translations in spacetime (strictly, generators of the Lie 
algebra of the Lie group of translational isometries). So a state sharing the full 
symmetry of the underlying spacetime should be unchanged by such operators, e.g., 

ti . But Noether tells us that the conservation of energy and momentum also 
follows from this invariance. It is a short conceptual step to the eigenvalue equations 
such as Ei t  which underpin quantum mechanics. Noether had essentially set 

up the correspondence tiE  and ip  before quantum mechanics (only just 
before, actually, by a few years). 

The links symbolised by tiE  and ip  are now so embedded within 
physical theory that mathematical developments are liable to treat them as mere 
definitions. This is not logically wrong. But it is in danger of loosing the connection 
with the physical world and robbing us of the achievements which have been made. It 
is salutary to recall that concepts of energy matured most in conjunction with the 
development of steam power in the nineteenth century. These were practical times. 
Engineers needed to stop mines flooding, and the mine owners wanted to burn as little 
coal as possible powering the steam engine driven pumps as in so doing. There was 
scant interest in philosophical speculations about the nature of energy amongst such 
men. But this should not dampen our enthusiasm for delving into the fundamental 
nature of things. The truly wonderful thing is this: the energy of interest to those 
nineteenth century engineers and that in tiE  are the same thing.  



So what is Noether s Theorem? Noether s Theorem states that for every continuous 
symmetry of a Lagrangian dynamical system there corresponds a conserved quantity. 
A limitation of the theorem is that it applies only to theories expressed in Lagrangian 
form. This is hardly a serious limitation, however, since virtually the whole of physics 
can be so formulated. Examples are as follows, 

 
The absence of an explicit time dependence in the Lagrangian implies that the 
dynamical behaviour of the system will be the same tomorrow as it is today and 
was yesterday. The Lagrangian is invariant under the action of translation in time. 
Noether s Theorem tells us that there must be a conserved quantity. This 
conserved quantity is energy. 

 

The physical laws controlling the behaviour of a system are expected to be the 
same here as on Mars, or our space programmes will be in trouble. So the 
Lagrangian is expected to be invariant under spatial translations. Since there are 
three spatial dimensions, there are three conserved quantities  the three 
components of momentum. 

 

Space is also isotropic: there is no preferred direction. The Lagrangian should 
therefore be invariant under rotations of the coordinate system. The 
corresponding conserved quantity is angular moment. There are three components 
of angular momentum corresponding to the three perpendicular axes of rotation.  

The rotational symmetry, leading to the conservation of angular momentum, is of 
particular interest. It is here that we discover spin. Spin is that part of the angular 
momentum which is intrinsic to the object itself and not due to the object s motion in 
space. For a long time I had the incorrect idea that spin was something essentially 
quantum mechanical. But spin is no more (or less) quantum mechanical than other 
forms of momentum. My misunderstanding was the result, of course, of the 
importance of spin in atomic, nuclear and particle physics. This false perspective 
regarding the essential quantum nature of spin was reinforced by Pauli (1924) who 
referred to it as a non-classical two-valued-ness . Of course the spin of an electron is 
indeed non-classical, and intrinsically quantum mechanical. But then, so is its linear 
momentum and energy state. But spin is not intrinsically quantum mechanical in the 
general case, any more than is linear momentum or energy. I was brought up with the 
vague notion that the term spin was not to be taken too literally. But spin can be 
relevant in classical physics, in which context the word spin is precisely accurate. 
Quantum applications introduce their usual weirdness, of course, but spin is affected 
by this only in the same manner as orbital angular momentum. So Pauli s non-
classical two-valued-ness is a fair description of the spin of electrons, but the spin of 
a tennis ball is also spin.  

All the above examples of conserved quantities arise from symmetries under the 
Poincare group of transformations. But we missed out the Lorentz boosts. The 
equivalence of inertial observers is also a symmetry. What quantity is conserved as a 
result? There is such a conserved quantity, as there must be by Noether s Theorem. 
However the status of this quantity is rather different. This is explained below.  

The Poincare group does not provide the only possible symmetries of a Lagrangian. 
There are broadly two other classes of symmetry: dynamical and internal. Should I 
also mention gauge symmetries? A dynamical symmetry is an algebraic invariance of 
the Lagrangian which depends upon the particular form of the interaction. For 
example, in the Kepler problem or the hydrogen atom (see Chapters 15 and 35) the 



Runge-Lenz vector is conserved as a consequence of the r/1  form of the gravitational 
and Coulomb potentials. This is a dynamical symmetry. Internal symmetries arise 
when several different fields are involved and the Lagrangian is invariant under some 
transformation which involves algebraic combinations of these fields alone. For 
example, a Lagrangian for a complex field may depend only upon absolute 
magnitudes and hence be invariant if the field is multiplied by a phase factor (which is 
just a linear transformation of the real and imaginary parts). This leads to a conserved 
quantity which can be interpreted as electric charge. In a similar manner the various 
internal symmetry groups of particle physics [SU(2), SU(3)] lead to conserved 
quantum numbers.  

In this Chapter we shall concentrate on the Poincare symmetries as they apply to 
fields of arbitrary spin in flat (Minkowski) spacetime. However we shall also indicate 
how the conserved quantities corresponding to internal symmetries can be derived in 
the simplest case, the conservation of charge. 

2. The Poincare Symmetries and Their Conserved Quantities 

Throughout this Chapter we work in units with 1c . The fields in question will be 
written xr . The subscript r serves two different purposes. Firstly it labels the spin 
degrees of freedom of a given field. Secondly it can also address the presence of more 
than one field in the system. The Lagrangian is assumed to be a function of the fields 

and their first derivatives, ,, rrL . The principle of minimum action, 04 xLd , 

leads to the Euler-Lagrange equations (see Chapter 13),     

,rr

LL     
(1) 

This applies for all r, covering all spin degrees of freedom of all contributing fields.  

It is important to distinguish clearly between changes due to coordinate changes and 
changes due to the transformations amongst the spin degrees of freedom at a point. 
We shall use x  and x  to refer to the same point in spacetime as seen by two 
observers, S  and S . Similarly, the same spinorial or tensorial field seen at this point 
has components r  as seen by S , but components r  as seen by S . For a scalar field 
there is therefore no difference, . However, care is needed because a spacetime 
transformation can affect both the coordinates of the point in question and the 
components of a spinorial/tensorial field. The effect of a general, but infinitesimal, 
Poincare transformation of the coordinates is,     

xxx     (2) 

The  and  are a set of infinitesimal, real parameters, arbitrary apart from being 

anti-symmetric, . [It is easy to see that xxx  is the most general 

homogeneous Lorentz transformation to first order in the small quantities . This 

would follow by appeal to the specific matrix representations for these 
transformations, e.g., as given for the rotations in Chapter 32. But this is not 
necessary. The Lorentz transforms preserve the Minkowski metric, so we require 

xxxx . But, 
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where the last step requires only the antisymmetry of the transformation coefficient 

matrix, . Hence, to first order in the small quantities , the Minkowski 

metric is preserved by xxx . Moreover, there are six independent 

 

parameters which clearly produce six linearly independent transformations of x . So 
(2) must be the most general Poincare transformation]. 

Recall that x  and x  refer to the same point in spacetime, and the transformation (2) 
describes how to find the coordinates seen by observer S  given those seen by S . 
However they are both observing the same field at the same point. Observer S  sees 
the fields xr  whereas S  sees the fields xr . Though these are the same field at 
the same point, the differing orientation and/or states of motion of the two observers 
means that they do not see the same numerical field components. Instead they are 
related by whatever spin/tensor representation of the Lorentz group is appropriate for 
that field type. Hence we can write, for an arbitrary but infinitesimal transformation, 

Spin > 0:   xSxx srsrr 2

1

   

           (3a) 

Spin = 0:   xx rr

     

           (3b) 

where repeated indices are summed, in the case of Greek indices over the 4 spacetime 
dimensions, and for Latin indices over the spin degrees of freedom for the field in 
question. If there is more than one field, Equ.(3) applies separately for each one (i.e., 
for different ranges of the subscript r). In (3) the rotation/boost parameters  are, of 

course, necessarily identical to those appearing in (2), since they are defined by the 
relationship between S  and S . Hence, since the  are anti-symmetric, the 

representation matrices of the Lorentz group appearing in (3a) can be assumed anti-

symmetric in these indices also, i.e., rsrs SS .  

I used to get tied in knots when deriving Noether s conserved quantities as a result of 
the different field differentials that occur. It is important to distinguish between three 
things, 

The local differential:  xSxxx srsrrrL 2

1

 

           (4a) 

Or, for spin zero (scalar): 0xxx rrrL

    

           (4b) 

The functional differential: xxx rrr

     

(5) 

The gradient:   x
x

x
xxx r

rrr

   

(6) 

The three are related since xxxxxxx rLrrrrrr . To 
first order in small quantities this gives, 

xxx rrrL

    

(7) 

since xr  only differs from xr  by a second order term. Re-arranging and 
substituting (4) and (6) gives, 



x
x

x
xSxxx r

srsrrLr 2

1  
(8) 

In (8) it is understood that the first term on the RHS is dropped for a scalar field. 

Now the two observers must see the same Lagrangian, i.e.,    

xxLxxL rrrr ,, ,,

   
(9) 

(The alert reader may be worried that, because L is really a Lagrange density, the 
change in volume element between observers might mean that L should not be 
invariant. This would indeed be the case if L were a density in the sense of per unit 
spatial volume . But, in fact, L is a density per volume element of spacetime, i.e., per 

xd 4  not per xd 3 , and the 4-volume element is a scalar).  

In general, the total change of a function-of-a-function when the independent 
functions are changed and the point at which they are evaluated is also changed, is 
given by, for example,    

x
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xhxgdf ...,...,             (10) 

Applying this to the difference between the LHS and RHS of (9) gives,            (11) 

0,, ,
,
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x
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Note that the fact that the RHS of (11) is zero is an expression of the symmetry, i.e., 
the invariance, (9). On the RHS of (11), evaluation of all quantities at x is understood. 
Here r  corresponds to the differential defined by (5) and given by (8). The Euler-
Lagrange equations, (1), allows us to re-write (11) as, 
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Now substituting for r from (8) gives, 
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           (13) 

Again it is understood in (13) that the term in rsS  is dropped for a scalar field. This is 
the master equation from which all the conserved quantities resulting from the 
symmetry under Poincare transformations, (2), can be derived. 

2.1 The Energy-Momentum Tensor 

It is convenient to consider spacetime translations separately from rotations and 
boosts. In (2), the former have non-zero  but 0 , whereas for the latter it is the 

other way around. For spacetime translations, xxx , and (13) becomes, 

0
, x

L

x

xL r
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           (14) 



But note that LL
x

L
, where  is the Minkowski metric tensor. So 

(14) becomes, 

0
,

L
x

xL r

r   

           (15) 

This is true for arbitrary  and hence the rank 2 tensor, 

L
x

xL
T r

r ,   

           (16) 

must have zero divergence,      

0T               (17) 

Hence the four quantities defined by,      

xdTP 30

   

           (18) 

are conserved, i.e., (17) implies that,      

0
dt

dP

    

           (19) 

In (18) it is understood that the spatial integral extends over the whole of space. Note, 
however, that being divergence free, (17), also expresses the more general property of 
continuity. The rate of change of the quantity in question within any region of space is 
balanced by the flux of the quantity out of the boundary of the region,    

V
i

ii

V
i

V

dSTxdTxdT
t

330             (20) 

This leads to the interpretation of iT as being the flux of P , through unit area with 
normal in direction i  per unit time. Global conservation, (19), follows from local 
continuity, (20), in the limit that the region V is the whole of space and assuming that 

the fields vanish at infinity such that 0
V

i
i dST  as the boundary V .  

From these purely mathematical observations we conclude that there are 4 types of 
stuff , labelled by the index , whose density is 0T  and whose vectorial flux is 

iT . Specific examples whose interpretation is already understood show that the P

 

can be interpreted as the energy-momentum 4-vector. In unfamiliar cases, (18) is 
taken to define the energy-momentum 4-vector. As noted in §1 this is consistent with 

quantum mechanics, in which we have the correspondence iP , and these 
operators generate the representation (2) of the translation sub-group of the Poincare 
group. Consequently T  is called the energy-momentum tensor. 

Assuming this interpretation is sound, it follows that 00T  is energy density; 0iT  is the 
vectorial flux of energy through unit area per unit time; iT 0  is the density of 
momentum in the direction i; and jiT  is the flux (per unit area per unit time) in the 
direction j of the ith component of momentum.  



2.2 The Symmetry of the Energy-Momentum Tensor 

The physical interpretations described above suggest that the energy-momentum 
tensor should be symmetrical. This can be seen as follows. The flux of stuff is the 
density of stuff times its velocity. So the energy flux is expected to be energy density 

times velocity, v
dV

dE
T i0 , where dE  is the energy in volume dV . On the other hand, 

momentum density is expected to be v
dV

dm

dV

pd
T i0 , where dm  is the mass in 

volume dV (suitably allowing for relativistic effects so that 0dmdm ). But provided 
that Einstein was right and we can equate mass and energy, mE  (recalling that we 

are using 1c ), then these two things are the same, i.e., 00 ii TT . Similarly, the flux 

in direction j of the ith component of momentum is jij
i

ji vv
dV

dm
v

dV

dp
T  and hence 

is also expected to be symmetric.  

We note that the symmetry of the stress energy tensor is actually deeply embedded 
within relativity theory in the form of the Einstein field equations of general relativity, 

TGG 8 . The symmetry of T  is required by these equations because G  is 

identically symmetric. Indeed this leads to an alternative definition 
g

L
T 2 .  

However, the definition (16) of the energy-momentum tensor does not itself ensure 
that the energy-momentum tensor is symmetric. Instead, the physical requirement for 
T  to be symmetric is a constraint upon suitable Lagrangians. The Lagrangian which 

is often employed in classical electromagnetism, 4/FFL  , where 

][ AF , does not lead to (16) being symmetrical. Texts generally adjust the 

canonical energy-momentum tensor given by (16) to be symmetrical by adding an 
extra term whose divergence is identically zero and whose contribution to the 4-
momentum is zero. I have always regards the procedure as a blemish on the theory. 
One might have hoped for a Lagrangian which led directly to a symmetrical T . The 

Lagrangian FFL  is problematical in quantum field theory also, because the 

canonically conjugate fields have an identically zero time component which 
undermines the canonical quantisation procedure. So QED uses an alternative such as 

2/AAL  which does produce a symmetric energy-momentum tensor. 

However this Lagrangian only reproduces Maxwell s equations if a Lorentz gauge 

such that 0A  is assumed.  

2.3 The Conservation of Angular Momentum and the Origin of Spin 

We now consider a general Lorentz transformation of coordinates but with no 

translation, i.e., xxxx . Substitution into (13) gives, 
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            (21) 

Putting LL
x

L
 this becomes, 
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          (22) 

Note that the term x  can be taken inside the derivative  because 

0x  by virtue of the anti-symmetry of . The 

second and third terms in (22) can be re-written in terms of the energy-momentum 
tensor using (16) as, 

0
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          (23) 

However we cannot conclude that the coefficient of  in (23) is zero because the 

anti-symmetry of  means that it is only the part of this which is antisymmetric in 

 which must be zero. Hence we write, 

TxTxxS
L

srs
r ,   

          (24) 

Note that rsrs SS , so that , and 0 then implies, 

0

     

           (25) 

[We note in passing that for a scalar field, (24) and (25) imply that TT , so 
that the difficulty noted in §2.2 will not arise for spinless particles].  

Since , (25) gives us six further conserved quantities defined by,     

xdM 30

    

           (26) 

As before, i , for spatial indices i, can be interpreted as the flux of these quantities. 

But what are they? In this section we will consider the spatial components, ijM  (the 
components iM 0  are considered in §2.4). If we look firstly at the second term in (24) 
 which would be the only term for a scalar field  we find, 

ijjiij
orbit TxTxxdM 003

   

           (27) 

But jT 0  is the jth component of the density of momentum, so jiTxxd 03  is the ij 
component of angular momentum due to the field in a small volume element, i.e., due 
to the momentum in the j-direction multiplied by the distance in the i-direction. So if 

ijk is a permutation of 1,2,3, then ijji TxTxxd 003  is the angular momentum in the 

k-direction due to the fields in this small region. So we can interpret ij
orbitM  as the 

angular momentum of a scalar field, or that part of the angular momentum of a field 
with spin degrees of freedom which does not depend upon the spin. Specifically, 

because ij
orbitM  arises from products of linear momentum and perpendicular distance, 

it is the orbital angular momentum of the field.  

The first term in (24) must have an interpretation compatible with the second term, 
otherwise it would make no sense to add them together. This allows us finally to 
interpret the first term in (24) as the angular momentum which arises from the spin 



degrees of freedom. This justifies the use of the word spin for the degrees of 

freedom associated with the rotational transformations under the representation rsS  of 
the Lorentz group. The term spin appropriately encapsulates that form of angular 
momentum intrinsic to the field, rather than resulting from orbital angular momentum.      

xS
L

xdM s
ij
rs

r

ij
spin

0,

3

   
           (28) 

The definition of the field conjugate to r  is, 

0,r
r

L

     

           (29) 

So (28) can also be written,     

xSxdM s
ij
rsr

ij
spin

3              (30) 

The total angular momentum is,     

ij
spin

ij
orbit

ij MMM

    

           (31) 

It is only this total angular momentum which is conserved as a consequence of (25), 
i.e.,      

0
dt

dM ij    

           (32) 

This is the origin of spin. It is required for any theory formulated in Lagrangian terms 
and for which the fields transform under rotations according to a representation of the 
Lorentz group other than the trivial one-dimensional representation (i.e., other than 
scalar fields). This is the reason why fields which are vectorial or tensorial of rank 2 
in classical physics correspond to quantum fields with quanta which possess spins of 
1 or 2 -units respectively. The tensorial/spinorial degrees of freedom of a field 
defined over the spacetime continuum correspond, and give rise to, the spin of its 
quanta.  

Note, however, that there is nothing essentially quantum-mechanical about spin in 
general. The fields in question could be purely classical. So why does spin generally 
appear to be an overtly quantum mechanical concept? The reason, I suspect, is due to 
the rotation group being the only compact subgroup of the Poincare group. This 
means that it is the only subgroup which has finite dimensional unitary 
representations. Consequently it is only the rotations which correspond to eigenstates 
(angular momentum states) which have discrete eigenvalues ( mj, ). Because the 
angular momentum states are discrete, the quantum properties are more apparent. For 
example, a spin half particle can be spin up or spin down with respect to a given 
measurement direction  but no intermediate case will be measured. This is obviously 
and overtly quantum.  

Interpreted classically there is no reason why the spin angular momentum given by 
(28) should not take a continuum of values, rather than being confined to the 
eigenvalues of a discrete representation, S . This is true even if S is the ½-spinor 
representation or the vector (spin 1) representation. Thus, the spin angular momentum 
of the classical electromagnetic field can be evaluated using (28), but it is not 
(classically) confined to discrete values. Thus it is the measurement theory of 



quantum mechanics which distinguishes the quantum from the classical, not the mere 
existence of spin per se. This holds that measurements can only produce results which 
are eigenvalues of the operator representing the quantity measured. Where the 
representation is finite, as for the rotations, these eigenvalues are necessarily a 
discrete set.  

Whilst the same measurement theory also applies to, say, the measurement of energy 
or linear momentum, these correspond to a non-compact subgroup of the Poincare 
group. Now in the quantum mechanics of single particles (as opposed to field theory) 
symmetries must be enacted on quantum states as unitary operators (though anti-
unitary operators will also do - Wigner s theorem). But non-compact Lie groups have 
no finite dimensional unitary representations. Hence translations in Minkowski 
spacetime must be implemented in quantum mechanics as infinite dimensional unitary 
representations, i.e., as differential operators acting on a space of continuous 
functions. Their eigenvalues then take a continuum of values. Hence, whilst the 
measurement theory of QM still applies, it is not so obvious since there is no 
discreteness in the set of possible energy or momentum values.  

The translation subgroup can be made compact by confining the particle to a box with 
suitable boundary conditions. This causes the possible energy and momentum states 
to become quantised into a discreet set, labelled by quantum numbers l,m,n  in the 
manner familiar from solving the Schrodinger equation for this problem. But we see 
now that the origin of this discreteness is the compactness of the relevant Lie group 
arising from the box boundary conditions. Am I happy with all this? 

2.4 Is There a Conserved Quantity Corresponding to Covariance under Boosts? 

Well, we know there is  we have already derived it in the form of Equ.(25). The 
boosts correspond to one of being zero. The conserved quantities are, 

xdMM jjj 30000              (33) 

But, before we examine (33) more closely, two little problems arise. The first is that, 
whilst we could easily have guessed the previous conservation laws, i.e., the 
conservation of energy, momentum and angular momentum, there now appears to be 
no obvious conserved quantity left. What can it be? 

The second problem seems to confirm the first. It comes from considering the 
commutation properties of the generators of the Poincare group (or more correctly, 
the Lie algebra). These are,                        

                          (34) 

njknkj LiLL ,  njknkj LiKK ,  njknkj KiKL ,  

njknkj PiLP ,  0, PiKP jkkj

  

0, PP 

0,0 kLP   kk iPKP ,0 

where L , K , P  are the generators of rotations, boosts and spacetime translations 

respectively. The commutators of the generators of the homogeneous Lorentz group, 
jL  and jK , are discussed in the context of finite dimensional representations in 

Chapter 35, the group elements being given by KLiexp  for the six arbitrary 



real parameters  and . However the easiest way to check the commutators (34) is 
through the infinite dimensional (continuum) representation as differential operators, 

iP ; xxiM ; tjjjj xtiMK 0 ; 2/nmjnmj ML . Need to 

check this correctly reproduces (34). Are the contravariant/covariant indices ok? 
Make notation for Poincare operators consistent between all Chapters. Relevant 
Chapters include 3, 15, 27, 32, 35 and 42.  

Now in quantum mechanics the energy 0P  will be equated with the Hamiltonian, and 

we will interpret the rate of change of a quantity with the commutator: 0, PQ
dt

dQ
i . 

Consequently conserved quantities should be associated with operators which 

commute with 0P . This works for linear momentum, since 0, 0PPj . It also works 

for angular momentum since 0,0 kLP . And it trivially works for energy, since 
obviously 0, 00 PP . However, it would appear that the value taken by the boost 

operator K  is not conserved because kKP ,0  is not zero. So just what is the meaning 
of (33)? 

It is quite common in texts for authors to shy away from this question altogether. And 
even when they do not, they usually only address the meaning of part of (33). We 
shall also offer only a partial explanation here, putting off the rest until §?? We have, 

0000030 TxTxxSxdM jj
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j
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          (35) 

We shall initially consider the meaning only of the second term, i.e., the sole term 
which would occur for a scalar field, 

000030 TxTxxdM jjj
scalar

   

                      (36) 

But jj tPTxxd 0
0

3  using (18). Similarly, if we normalise 003 Txxd j  by the total 

energy, 003 TxdE  we see that,     
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003

Txd
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           (37) 

is the position of the centre of mass of the field system. In this context a better name 
might be centre of energy , since that is what (37) literally produces. But, of course, 
there is no difference in relativity theory (apart from the units, i.e., that factor of c2). 
Putting these together we see that the quantity which Noether tells us is conserved is, 

jjj
scalar EtPM 0                (38) 

Now since we already know that energy and momentum are conserved, by (19), the 
conservation of the quantity (38) gives, 
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           (39) 

This tells us that, 

dt

d
EP

j
j

      

           (40) 



So, the total momentum equals the total energy times the velocity of the centre of 
mass-energy (recall we are working in units with c = 1). This is the expected result, of 
course, and corresponds exactly to the relativistic momentum of a single particle 
( mvEvp ) and reduces to the non-relativistic value of momentum for v << c 
( mvp ). However, for an arbitrary system of fields, quite possibly many different 
fields undergoing complicated interactions, we had no right to assume that this 
relation would hold. The energy and momentum might be widely distributed over a 
large region. So Noether s theorem has a non-trivial  indeed a crucial  implication 
when applied to boosts.  

Nevertheless we can ask what is the meaning of the quantity in (38) which is 
conserved? We note that its value depends upon the coordinate system, both the 
spatial system and the origin chosen for time. It is this latter feature which renders the 
quantity rather different from the other conserved quantities. By a suitable choice of 
the zero datum for time, the quantity in (38) can always be chosen to be zero. And 
since it is conserved, it is always zero.  

So now we see the resolution of the apparent conflict between the implications of the 
Poincare commutators, (34), under a Hamiltonian interpretation, and Noether s 
theorem, under a Lagrangian interpretation. The commutators are quite right in 
indicating that there is no physical quantity of interest arising from invariance under 
boosts. The entity resulting from the application of Noether s theorem, (38), can be 
taken to be identically zero, forever.  

But, on the other hand, the application of Noether s theorem to the boosts does 
produce an extremely important physical equation, namely (40) which tells us what 
the total momentum is in terms of the total energy and the centre-of-mass velocity. 
This is important and non-trivial and results from the time derivative of (38) being 
zero, despite the fact that the quantity in (38) is itself of no interest. 

So how does the Hamiltonian / commutator perspective reflect this? The answer is 
that, although kk iPKP ,0  implies that there is no interesting conserved quantity 

associated directly with K , nevertheless the fact that 0,0 kPP  means 

0,, 00 kKPP . Since 
dt

dK
iKP k

k,0 this means that 0,0 dt

dK
P k  and so the 

object whose conservation is interesting will be 
dt

dKk , rather than K  itself. This 

aligns exactly with what has been found from Noether s theorem. Simpler still, we 
can consider the special case that 0iP  in which case 0,0 kKP  and the conserved 
quantity, from (40), is just i : the centre of mass position.  

3. Examples of Noether Conservation for Other Symmetries  The Conservation 
of Charge 

Consider now the case of purely internal symmetries. That is, transformations which 
mix the fields r  but have no affect upon spacetime. We can write,     

xSxxx srsrrr

  

           (41) 

Since 0x , (13) becomes, 



0
,

srs
r

S
L

    
           (42) 

And hence the conserved quantities are, 

srs
r

S
L

,

    
           (43) 

with    0

     

           (44) 

Hence there is one conserved quantity for each value of , corresponding to each 
continuous parameter of the internal symmetry, (41). The simplest example is 
provided by a complex field whose Lagrangian is invariant under an arbitrary change 
of phase of the field, i.e.,     

iei

    

         (45a) 

The Hermetian conjugate field transforms as,     

ie i           (45b) 

Note that the field and its conjugate count as separate fields, i.e., the subscript r in 

(43) takes two values, say 1 and 2, for which iS11  and iS22 , and 012S . Hence 

(43) gives, 

i
L

i
L

,,   
           (46) 

Suppose we have a Lagrangian whose only terms in the derivatives of these fields is 

2

1
. Then (46) gives,     

ii             (47) 

where  is the antisymmetric derivative defined by (47). The Noether conserved 
quantity is given by,     
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           (48) 

where we have used the conjugate fields 0,
0,

L
. In quantum field theory this 

conserved quantity can be interpreted as the electric charge (or, at least, if we multiply 

by the quantum of charge it can, ie ). This is because it can be written in 

terms of the number operators for particles and antiparticles, N  and aN , as,    

a

k

a
kk

k
kkkk NNeNNebbaaeQ

 

           (49) 

as shown in Chapter 43. This is a consistent interpretation because particles and 
antiparticles are oppositely charged, so the total charge is just the difference in their 

numbers, as given by (49). Consequently 

 

can be interpreted as the 4-current 
density. 



Note that invariance under a phase change is effectively a symmetry under group 
U(1). Consequently we see that the conservation of charge is due to U(1) symmetry.  

Loose Ends 

In discussing the interpretation of the Noether quantity conserved under boosts in 
§2.3, we confined attention to the case of a scalar field. This leaves unexplained what 
might be the meaning or significance of the spin dependent term in (35).         
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