Chapter 27

Noether’s Theorem and the Origin of Spin

The derivation of conserved quantities from symmetry is one of the most
fundamental features of modern physics. The quantities which are conserved as a
result of the Poincare symmetries of Minkowski spacetime are derived here.
Amongst other thingsthis puts spin in its proper context.
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1. What isNoether’s Theorem?

What is the greatest theorem in mathematical physics? Noether’s Theorem would
surely be one of the strongest candidates for the title. | recall the moment as an
undergraduate when | first learnt that the conservation of energy and momentum
could be derived from the trandational symmetry of spacetime. It was one of those
pivotal moments when you know that your understanding has just made a major leap
forward. Such conceptual break-throughs are exactly what physicists constantly strive
towards. Prior to appreciating the connection with symmetry, the conservation of
energy was to be regarded as a physical Law. The connection with symmetry turnsit
instead into a mathematical theorem. It is one less thing which appears contingent
upon how the physical world just happens to be, and one more thing whose logical
necessity has been pinned down to a more fundamental level. Thisiswhat progress
consists of in physics.

Noether’s Theorem does not only elucidate the conservation laws in classical physics,
it also provides the most cogent perspective on the formulation of quantum
mechanics. When one first comes across the correspondence E —i70, and p— —inV

in quantum mechanics oneislikely to think, “For God’s sake, why?” But these
operators are the generators of trandations in spacetime (strictly, generators of the Lie
algebra of the Lie group of translational isometries). So a state sharing the full
symmetry of the underlying spacetime should be unchanged by such operators, e.g.,
inoy oy . But Noether tells us that the conservation of energy and momentum also

follows from thisinvariance. It is a short conceptual step to the eigenval ue equations
such as ino,y = Ey which underpin quantum mechanics. Noether had essentially set

up the correspondence E —i%d, and p— -izV before quantum mechanics (only just
before, actually, by afew years).

Thelinks symbolised by E —i76, and p— -inV are now so embedded within

physical theory that mathematical developments are liable to treat them as mere
definitions. Thisis not logically wrong. But it isin danger of loosing the connection
with the physical world and robbing us of the achievements which have been made. It
issalutary to recall that concepts of energy matured most in conjunction with the
development of steam power in the nineteenth century. These were practical times.
Engineers needed to stop mines flooding, and the mine owners wanted to burn aslittle
coal as possible powering the steam engine driven pumps as in so doing. There was
scant interest in philosophical speculations about the nature of energy amongst such
men. But this should not dampen our enthusiasm for delving into the fundamental
nature of things. The truly wonderful thing is this: the energy of interest to those
nineteenth century engineers and that in E — i%0, are the samething.



So what is Noether’s Theorem? Noether’s Theorem states that for every continuous
symmetry of aLagrangian dynamical system there corresponds a conserved quantity.
A limitation of the theorem isthat it applies only to theories expressed in Lagrangian
form. Thisis hardly a serious limitation, however, since virtually the whole of physics
can be so formulated. Examples are as follows,

e The absence of an explicit time dependence in the Lagrangian implies that the
dynamical behaviour of the system will be the same tomorrow asit istoday and
was yesterday. The Lagrangian isinvariant under the action of trandation in time.
Noether’s Theorem tells us that there must be a conserved quantity. This
conserved quantity is energy.

e The physical laws controlling the behaviour of a system are expected to be the
same here as on Mars, or our space programmes will be in trouble. So the
Lagrangian is expected to be invariant under spatial tranglations. Since there are
three spatial dimensions, there are three conserved quantities — the three
components of momentum.

e Spaceisalsoisotropic: thereis no preferred direction. The Lagrangian should
therefore be invariant under rotations of the coordinate system. The
corresponding conserved quantity is angular moment. There are three components
of angular momentum corresponding to the three perpendicul ar axes of rotation.

The rotational symmetry, leading to the conservation of angular momentum, is of
particular interest. It is here that we discover spin. Spin isthat part of the angular
momentum which isintrinsic to the object itself and not due to the object’s motion in
space. For along time | had the incorrect idea that spin was something essentially
guantum mechanical. But spin is no more (or less) quantum mechanical than other
forms of momentum. My misunderstanding was the result, of course, of the
importance of spin in atomic, nuclear and particle physics. This false perspective
regarding the essential quantum nature of spin was reinforced by Pauli (1924) who
referred to it as “a non-classical two-valued-ness”. Of course the spin of an electron is
indeed non-classical, and intrinsically quantum mechanical. But then, soisits linear
momentum and energy state. But spin is not intrinsically guantum mechanical in the
general case, any more than is linear momentum or energy. | was brought up with the
vague notion that the term “spin” was not to be taken too literally. But spin can be
relevant in classical physics, in which context the word “spin” is precisely accurate.
Quantum applications introduce their usual weirdness, of course, but spin is affected
by this only in the same manner as orbital angular momentum. So Pauli’s “non-
classical two-valued-ness” isafair description of the spin of electrons, but the spin of
atennisball is also spin.

All the above examples of conserved quantities arise from symmetries under the
Poincare group of transformations. But we missed out the Lorentz boosts. The
equivalence of inertial observersisalso a symmetry. What quantity is conserved as a
result? Thereis such a conserved quantity, as there must be by Noether’s Theorem.
However the status of this quantity israther different. Thisis explained below.

The Poincare group does not provide the only possible symmetries of a Lagrangian.
There are broadly two other classes of symmetry: dynamical and internal. Should |
also mention gauge symmetries? A dynamical symmetry is an algebraic invariance of
the Lagrangian which depends upon the particular form of the interaction. For
example, in the Kepler problem or the hydrogen atom (see Chapters 15 and 35) the



Runge-Lenz vector is conserved as a consequence of the 1/r form of the gravitational
and Coulomb potentials. Thisisadynamical symmetry. Internal symmetries arise
when several different fields are involved and the Lagrangian is invariant under some
transformation which involves algebraic combinations of these fields alone. For
example, aLagrangian for acomplex field may depend only upon absolute
magnitudes and hence be invariant if the field is multiplied by a phase factor (which is
just alinear transformation of the real and imaginary parts). Thisleads to a conserved
quantity which can be interpreted as electric charge. In asimilar manner the various
internal symmetry groups of particle physics[SU(2), SU(3)] lead to conserved
guantum numbers.

In this Chapter we shall concentrate on the Poincare symmetries as they apply to
fields of arbitrary spin in flat (Minkowski) spacetime. However we shall also indicate
how the conserved quantities corresponding to internal symmetries can be derived in
the simplest case, the conservation of charge.

2. The Poincare Symmetries and Their Conserved Quantities

Throughout this Chapter we work in unitswith c=1. The fields in question will be
written ¢, (x). The subscript , serves two different purposes. Firstly it labels the spin

degrees of freedom of agiven field. Secondly it can also address the presence of more
than one field in the system. The Lagrangian is assumed to be afunction of the fields

and their first derivatives, L({g, }. ¢, , {). The principle of minimum action, 5[ Ld*x=0,
leads to the Euler-L agrange equations (see Chapter 13),
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This appliesfor al r, covering al spin degrees of freedom of all contributing fields.

It isimportant to distinguish clearly between changes due to coordinate changes and
changes due to the transformations amongst the spin degrees of freedom at a point.
We shall use x and x' to refer to the same point in spacetime as seen by two
observers, S and S'. Similarly, the same spinorial or tensorial field seen at this point
has components ¢, asseen by S, but components ¢, asseen by S'. For ascalar field

there istherefore no difference, ¢’ =¢. However, care is needed because a spacetime

transformation can affect both the coordinates of the point in question and the
components of a spinorial/tensorial field. The effect of a general, but infinitesimal,
Poincare transformation of the coordinatesis,

X =X, 85X + A, (2
Thee,, and A, areaset of infinitesimal, real parameters, arbitrary apart from being
anti-symmetric, ¢4, =—¢,,. [Itiseasy to seethat x, =x, + ga,,jx"j is the most general

homogeneous L orentz transformation to first order in the small quantities ¢, . This

would follow by appeal to the specific matrix representations for these
transformations, e.g., as given for the rotations in Chapter 32. But thisis not
necessary. The Lorentz transforms preserve the Minkowski metric, so we require

! o __ o
X, X'“ =x,x. But,
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X% = (xa +gaﬁxﬁXx“ + g“"gﬂﬁxﬁ): X" Xy + Eap X XT + 9% g, 5X X, +O(52)
= XXy + Eqp X X" + £, X xH + O(gz): XX, + O(gz)

where the last step requires only the antisymmetry of the transformation coefficient

matrix, &4, =-¢,,. Hence, to first order in the small quantitiese ;5 , the Minkowski

metric is preserved by x;, = x, +&,4 x? . Moreover, there are six independent Eap
parameters which clearly produce six linearly independent transformations of x, . So
(2) must be the most general Poincare transformation].

Recall that x and x’ refer to the same point in spacetime, and the transformation (2)
describes how to find the coordinates seen by observer S’ given thoseseen by S.
However they are both observing the same field at the same point. Observer S' sees
thefields ¢ (x') whereas S seesthefields ¢, (x). Though these are the same field at
the same point, the differing orientation and/or states of motion of the two observers
means that they do not see the same numerical field components. Instead they are
related by whatever spin/tensor representation of the Lorentz group is appropriate for
that field type. Hence we can write, for an arbitrary but infinitesimal transformation,

Spin >0 $.) =y (9 2,y ST 45(x) (32)

Spin =0: ¢ (X) = (x) (30)

where repeated indices are summed, in the case of Greek indices over the 4 spacetime
dimensions, and for Latin indices over the spin degrees of freedom for the field in
question. If thereis more than onefield, Equ.(3) applies separately for each one (i.e.,
for different ranges of the subscript r). In (3) the rotation/boost parameterse,,; are, of

course, necessarily identical to those appearing in (2), since they are defined by the
relationship between S and S'. Hence, sincethe ¢, are anti-symmetric, the
representation matrices of the Lorentz group appearing in (3a) can be assumed anti-
symmetric in these indices also, i.e., S% =-S5/~ .

| used to get tied in knots when deriving Noether’s conserved quantities as aresult of

the different field differentials that occur. It isimportant to distinguish between three
things,

The local differential: S o (X)=¢; (X) =g, (x) = > Cap S7 ¢ (x) (4a)
Or, for spin zero (scalar):  &,.¢, (x)=¢ (X')— ¢, (x)=0 (4b)
The functional differentia: &4, (x)=¢; (x) - ¢, (x) (5)
The gradient: 06, (%)= 4, (), (x)= ag;(x) &, (6)

The three are related since 64, (X')+ 84, (X)= ¢ (X') = ¢, (X')+ @, (X') - &, (X) = 5 ¢, (x). TO
first order in small quantities this gives,
S, (x)= 64, (x)+ 04, (x) )

since 64, (x) only differsfrom &g, (x') by asecond order term. Re-arranging and
substituting (4) and (6) gives,
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5y (x)= 6161 (x) = 061 (x) = = 2.5 S ds(x) -

In (8) it is understood that the first term on the RHS is dropped for a scalar field.
Now the two observers must see the same Lagrangian, i.e.,

L({gr (<) 7., (<)) = L{ige (9} . (%)) 9

(The aert reader may be worried that, because L isreally a Lagrange density, the
change in volume element between observers might mean that L should not be
invariant. Thiswould indeed be the case if L were adensity in the sense of “per unit
gpatial volume”. But, in fact, L isadensity per volume element of spacetime, i.e., per

d*x not per d3x, and the 4-volume element is a scalar).
In general, the total change of a function-of-a-function when the independent

functions are changed and the point at which they are evaluated is also changed, is
given by, for example,

df (g(x), h(x ),...)=—§g _(sm +?5x (10)

Applying thisto the difference between the LHS and RHS of (9) gives, (11)
Ll , , oL oL B
e = L 00, OO L G0 0= 00+ = 0, =0

Note that the fact that the RHS of (11) is zero is an expression of the symmetry, i.e.,
the invariance, (9). On the RHS of (11), evaluation of all quantities at x is understood.
Here 54, corresponds to the differential defined by (5) and given by (8). The Euler-

Lagrange equations, (1), allows usto re-write (11) as,

8 { oL ]5¢r oL =S, + FLLIP { o 5¢J+ia‘xa=o (12)

Oy 0d; 4 0X,, v 4 0X,,
Now substituting for ¢, from (8) gives,
oL |1 o, (x) oL
d ap RSP —— 6%, =0 13
(8¢r B} { aﬁsl’ ¢S( ) ox, XaiD"’_ ox, Xor ( )

Again it is understood in (13) that the term in S is dropped for ascalar field. Thisis

the master equation from which all the conserved quantities resulting from the
symmetry under Poincare transformations, (2), can be derived.

2.1 The Energy-Momentum Tensor

It is convenient to consider spacetime translations separately from rotations and
boosts. In (2), the former have non-zeroA,, but ¢, =0, whereas for the latter it isthe

other way around. For spacetime translations, dx, = x;, — X, =A, , and (13) becomes,

%8;{ oL {8¢r(X)D_ oL }Aa 0 14
MER IS




But note that aal‘

=0“L=n"0,L,where n“ isthe Minkowski metric tensor. So

o

(14) becomes,
0, oL M —n*L|lA, =0 (15)
b | Xy
Thisistruefor arbitrary A, and hence the rank 2 tensor,
Tya = al— |:a¢r (X):| _ 77/10{ L (16)
0| X,
must have zero divergence,
9,TH =0 a7
Hence the four quantities defined by,
P* =[T% .d% (18)
are conserved, i.e., (17) implies that,
dP“
=0 19
” (19)

In (18) it isunderstood that the spatial integral extends over the whole of space. Note,

however, that being divergence free, (17), also expresses the more general property of

continuity. The rate of change of the quantity in question within any region of spaceis
balanced by the flux of the quantity out of the boundary of the region,

ijT"C‘ -d%=[4;Td%x= fT'“ds (20)
6tV \% N

Thisleads to the interpretation of T'* as being the flux of P“ , through unit areawith
normal in direction i per unit time. Global conservation, (19), follows from local
continuity, (20), in the limit that the region V is the whole of space and assuming that

the fields vanish at infinity such that {{T'“dS — 0 asthe boundary oV — .
oV

From these purely mathematical observations we conclude that there are 4 types of
‘stuff’, labelled by theindex ¢, whose density is T% and whose vectorial flux is

T'® . Specific examples whose interpretation is already understood show that the P*
can be interpreted as the energy-momentum 4-vector. In unfamiliar cases, (18) is
taken to define the energy-momentum 4-vector. As noted in 81 thisis consistent with

quantum mechanics, in which we have the correspondence P* « i7d% , and these
operators generate the representation (2) of the transation sub-group of the Poincare

group. Consequently T#“ is called the energy-momentum tensor.

Assuming this interpretation is sound, it followsthat T® is energy density; T'° isthe
vectorial flux of energy through unit area per unit time; T% isthe density of

momentum in the direction i; and T/ isthe flux (per unit area per unit time) in the
direction j of thei™ component of momentum.



2.2 The Symmetry of the Energy-M omentum Tensor

The physical interpretations described above suggest that the energy-momentum
tensor should be symmetrical. This can be seen as follows. The flux of ‘stuff’ isthe
density of stuff timesits velocity. So the energy flux is expected to be energy density

times velocity, T'® = 3—5\7 , WheredE isthe energy in volume dV . On the other hand,

momentum density is expected to be T =Q£5=3—\r?\7 , Where dm isthe massin

volume dV (suitably allowing for relativistic effects so that dm= ydm, ). But provided

that Einstein was right and we can equate mass and energy, E =m (recalling that we

areusing c=1), then these two things are the same, i.e.,, T® =T'°. Similarly, the flux
N i o

in direction j of thei™ component of momentumis T /' = %v’ =(C]|]|—\r?v'vJ and hence

is also expected to be symmetric.

We note that the symmetry of the stress energy tensor is actually deeply embedded
within relativity theory in the form of the Einstein field equations of general relativity,
G,, =81G-T,,. Thesymmetry of T, isrequired by these equations because G, is
oL
G

identically symmetric. Indeed thisleads to an alternative definition T#" =2

However, the definition (16) of the energy-momentum tensor does not itself ensure
that the energy-momentum tensor is symmetric. Instead, the physical requirement for
T,, tobesymmetric is aconstraint upon suitable Lagrangians. The Lagrangian which
is often employed in classical electromagnetism, L=-F, F#"/4 , where

F,, =0r,A;, doesnot lead to (16) being symmetrical. Texts generally adjust the

canonical energy-momentum tensor given by (16) to be symmetrical by adding an
extraterm whose divergence isidentically zero and whose contribution to the 4-
momentum is zero. | have always regards the procedure as a blemish on the theory.
One might have hoped for a L agrangian which led directly to asymmetrica T, . The
Lagrangian L« F,, F#" isproblematical in quantum field theory also, because the

canonically conjugate fields have an identically zero time component which
undermines the canonical quantisation procedure. So QED uses an alternative such as

L= —(a uA Xa" A" )/ 2 which does produce a symmetric energy-momentum tensor.
However this Lagrangian only reproduces Maxwell’s equations if a Lorentz gauge
suchthat 0, A* =0 isassumed.

2.3 The Conservation of Angular Momentum and the Origin of Spin

We now consider ageneral Lorentz transformation of coordinates but with no
translation, i.e., ok, =X/, — X, =¢&,4x” . Substitution into (13) gives,

oL (1 up (o 08 (x) 5] oL
a#{aﬂ,’# {Zgaﬁsrs ¢S(X) aXa Eaﬁx :|]+ aXa

Eaﬁ X'B = 0 (21)

oL
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Putting =0“L=n"0,L thisbecomes,

o



oL 1 aff a(ér( ) B au B _
a#{—a%# {ZS,S $s(x)— . X }+77 “LxP g5 =0 (22)

Note that theterm x? can be taken inside the derivative 6 P because
0, (77 WXL & o ): N e,50," =n“ e, =0 by virtue of the anti-symmetry of ¢,,. The

second and third termsin (22) can be re-written in terms of the energy-momentum
tensor using (16) as,

1 4L
d — Sy (x)-T+*xP |, =0 (23)
(2 a¢ry rs s() j 7]

However we cannot conclude that the coefficient of ¢,, in (23) is zero because the
anti-symmetry of ¢,, meansthat itisonly the part of this which is antisymmetric in
a3 which must be zero. Hence we write,

oL
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Notethat S =-S/*, sothat 3/ =-3*  and 9,3 ¢,, = 0thenimplies,

SHap

S g (x)+ (x“Tﬂﬂ —xﬂTW) (24)

0,3 =0 (25)

[We note in passing that for a scalar field, (24) and (25) imply that T* =T/7* | so
that the difficulty noted in 82.2 will not arise for spinless particles].

Since 3#% =_3#/* (25) gives us six further conserved quantities defined by,

M = [39 . d°%x (26)

Asbefore, 3’/ | for spatial indices', can be interpreted as the flux of these quantities.
But what are they? In this section we will consider the spatial components,M ! (the
components M are considered in §2.4). If we look firstly at the second term in (24)
— which would be the only term for a scalar field — we find,

orblt Id X( TOJ jTOi ) (27)
But T% isthej™ component of the density of momentum, so d3x-xT% istheij
component of angular momentum due to the field in asmall volume element, i.e., due
to the momentum in the j-direction multiplied by the distance in thei-direction. So if

ijk isapermutation of 1,2,3, then de’x-(xiTOj - jTO‘) is the angular momentum in the

k-direction due to the fields in this small region. So we can interpret Ml . asthe

angular momentum of a scalar field, or that part of the angular momentum of afield
with spin degrees of freedom which does not depend upon the spin. Specificaly,

because Ml arises from products of linear momentum and perpendicular distance,

it isthe orbital angular momentum of the field.

Thefirst term in (24) must have an interpretation compatible with the second term,
otherwise it would make no sense to add them together. Thisallows usfinally to
interpret the first term in (24) as the angular momentum which arises from the spin



degrees of freedom. This justifies the use of the word “spin” for the degrees of
freedom associated with the rotational transformations under the representation S of
the Lorentz group. The term “spin” appropriately encapsulates that form of angular
momentum intrinsic to the field, rather than resulting from orbital angular momentum.

oL

Mon = [ x5 = Sgs() (28)

The definition of the field conjugate to ¢, is,
oL
= 29

Ty o (29)
S0 (28) can also be written,

Ivlgpin =_[d3X-7rrSpS¢S(X) (30)
The total angular momentum is,

M =M cijrbit +M isjpin (31)

It isonly thistotal angular momentum which is conserved as a consequence of (25),
i.e.,

dm !
e 0 (32)

Thisisthe origin of spin. It isrequired for any theory formulated in Lagrangian terms
and for which the fields transform under rotations according to a representation of the
Lorentz group other than the trivial one-dimensional representation (i.e., other than
scalar fields). Thisisthe reason why fields which are vectorial or tensorial of rank 2
in classical physics correspond to quantum fields with quanta which possess spins of
1 or 2 n-unitsrespectively. The tensorial/spinorial degrees of freedom of afield
defined over the spacetime continuum correspond, and give rise to, the spin of its
quanta.

Note, however, that there is nothing essentially quantum-mechanical about spinin
general. Thefieldsin question could be purely classical. So why does spin generally
appear to be an overtly quantum mechanical concept? The reason, | suspect, is due to
the rotation group being the only compact subgroup of the Poincare group. This
means that it is the only subgroup which has finite dimensional unitary
representations. Consequently it is only the rotations which correspond to eigenstates
(angular momentum states) which have discrete eigenvalues ( j, m). Because the

angular momentum states are discrete, the quantum properties are more apparent. For
example, aspin half particle can be spin up or spin down with respect to a given
measurement direction — but no intermediate case will be measured. Thisis obviously
and overtly quantum.

Interpreted classically there is no reason why the spin angular momentum given by
(28) should not take a continuum of values, rather than being confined to the
eigenvalues of adiscrete representation, S. Thisistrue even if Sisthe ¥2-spinor
representation or the vector (spin 1) representation. Thus, the spin angular momentum
of the classical electromagnetic field can be evaluated using (28), but it is not
(classically) confined to discrete values. Thusit is the measurement theory of



guantum mechanics which distinguishes the quantum from the classical, not the mere
existence of spin per se. This holds that measurements can only produce results which
are eigenvalues of the operator representing the quantity measured. Where the
representation isfinite, as for the rotations, these eigenvalues are necessarily a
discrete set.

Whilst the same measurement theory also applies to, say, the measurement of energy
or linear momentum, these correspond to a non-compact subgroup of the Poincare
group. Now in the quantum mechanics of single particles (as opposed to field theory)
symmetries must be enacted on quantum states as unitary operators (though anti-
unitary operators will also do - Wigner’s theorem). But non-compact Lie groups have
no finite dimensional unitary representations. Hence trandlations in Minkowski
spacetime must be implemented in quantum mechanics as infinite dimensional unitary
representations, i.e., as differential operators acting on a space of continuous
functions. Their eigenval ues then take a continuum of values. Hence, whilst the
measurement theory of QM still applies, it is not so obvious since thereis no
discretenessin the set of possible energy or momentum values.

The trand ation subgroup can be made compact by confining the particle to abox with
suitable boundary conditions. This causes the possible energy and momentum states
to become quantised into a discreet set, labelled by quantum numbers|,m,n inthe
manner familiar from solving the Schrodinger equation for this problem. But we see
now that the origin of this discreteness is the compactness of the relevant Lie group
arising from the box boundary conditions. Am | happy with all this?

2.41sTherea Conserved Quantity Corresponding to Covariance under Boosts?

WEell, we know there is— we have already derived it in the form of Equ.(25). The
boosts correspond to one of o being zero. The conserved quantities are,

~MI0=M =39 . d% (33)

But, before we examine (33) more closely, two little problems arise. The first is that,
whilst we could easily have guessed the previous conservation laws, i.e., the
conservation of energy, momentum and angular momentum, there now appears to be
no obvious conserved quantity left. What can it be?

The second problem seems to confirm the first. It comes from considering the
commutation properties of the generators of the Poincare group (or more correctly,
the Lie algebra). These are,

(34)
le’I—kJ:iejknLn [Kj’KkJ:iejknLn [LijkJ:iejkn Ky
P L =i € P [Py Ky J=15Py [P..P,]=0
[Py, L ]=0 [Py, Ky ]=-iR,

where L, K, P, arethe generators of rotations, boosts and spacetime translations

respectively. The commutators of the generators of the homogeneous L orentz group,
L; and K, are discussed in the context of finite dimensional representationsin

Chapter 35, the group elements being given by exp{i 0-L+p- K} for the six arbitrary



real parameters @ and S . However the easiest way to check the commutators (34) is
through the infinite dimensional (continuum) representation as differential operators,
P, =i0,; M, =i(x,8, —%,8,); Kj =Mg; =i{td; - x;0; ); Lj =€jum M ym/2. Need to
check this correctly reproduces (34). Are the contravariant/covariant indices ok?

Make notation for Poincare operators consistent between all Chapters. Relevant
Chaptersinclude 3, 15, 27, 32, 35 and 42.

Now in guantum mechanics the energy P, will be equated with the Hamiltonian, and
dQ
—==[Q,R,].
&~ [Q.R]
Consequently conserved quantities should be associated with operators which
commute with P°. Thisworks for linear momentum, since [Pj ,Py|=0. 1t also works
for angular momentum since [Py, L, |=0. And it trivially works for energy, since
obviously [Py, Py ]=0. However, it would appear that the value taken by the boost
operator K isnot conserved because [Py, K, ] is not zero. So just what is the meaning
of (33)?
It is quite common in texts for authors to shy away from this question altogether. And

even when they do not, they usually only address the meaning of part of (33). We
shall also offer only a partial explanation here, putting off the rest until 87?2 We have,

M 0 :J'd?’x-{/zrSrosj¢s(x)+(XOTOj —ijOO)} (35)

we will interpret the rate of change of a quantity with the commutator: iz

We shall initially consider the meaning only of the second term, i.e., the sole term
which would occur for ascalar field,

VI =jd3x-{(x°T°j —ijOO)} (36)

scalar
But [d®x-x,T% =tP) using (18). Similarly, if we normalise [d®x-x/T% by the total
energy, E=[d*x- T we seethat,

j _'fd3x-ij00
% T®
isthe position of the centre of mass of the field system. In this context a better name
might be “centre of energy”, since that iswhat (37) literally produces. But, of course,

there is no difference in relativity theory (apart from the units, i.e., that factor of c?).
Putting these together we see that the quantity which Noether tells usis conserved is,

¢ (37)

MO —tpl —Es] (38)

scalar

Now since we already know that energy and momentum are conserved, by (19), the
conservation of the quantity (38) gives,

d . oj d (o j j o de!
=M —— (Pl —Esl =PI _EZ=_-0 39
dt - <A dt( 5) dt (39)
Thistells us that,
. j
pi_gd’ (40)

dt



So, the total momentum equal s the total energy times the velocity of the centre of
mass-energy (recall we are working in units with ¢ = 1). Thisis the expected result, of
course, and corresponds exactly to the relativistic momentum of asingle particle

( p=Ev=ymv) and reduces to the non-relativistic value of momentum for v<< c
(p=mv). However, for an arbitrary system of fields, quite possibly many different
fields undergoing complicated interactions, we had no right to assume that this
relation would hold. The energy and momentum might be widely distributed over a
large region. So Noether’s theorem has a non-trivial — indeed a crucial — implication
when applied to boosts.

Nevertheless we can ask what is the meaning of the quantity in (38) whichis
conserved? We note that its value depends upon the coordinate system, both the
gpatia system and the origin chosen for time. It is this |atter feature which renders the
guantity rather different from the other conserved quantities. By a suitable choice of
the zero datum for time, the quantity in (38) can always be chosen to be zero. And
sinceit isconserved, it is always zero.

So now we see the resolution of the apparent conflict between the implications of the
Poincare commutators, (34), under a Hamiltonian interpretation, and Noether’s
theorem, under a Lagrangian interpretation. The commutators are quite right in
indicating that there is no physical quantity of interest arising from invariance under
boosts. The entity resulting from the application of Noether’s theorem, (38), can be
taken to be identically zero, forever.

But, on the other hand, the application of Noether’s theorem to the boosts does
produce an extremely important physical equation, namely (40) which tells us what
the total momentum isin terms of the total energy and the centre-of-mass velocity.
Thisisimportant and non-trivial and results from the time derivative of (38) being
zero, despite the fact that the quantity in (38) isitself of no interest.

So how does the Hamiltonian / commutator perspective reflect this? The answer is
that, although [Py, K, |= -iP, impliesthat thereis no interesting conserved quantity
associated directly with K , nevertheless the fact that [Py, P ]=0 means

[Py, [Py, K ]|=0. Since [Py, Kk]z—ihdg—tk this means that [Po,m;—t"} =0 and so the

object whose conservation isinteresting will be dg—t" rather than K itself. This

aligns exactly with what has been found from Noether’s theorem. Simpler still, we
can consider the special casethat P =0 in which case [P, K, |=0 and the conserved

quantity, from (40), isjust ¢&; : the centre of mass position.

3. Examples of Noether Conservation for Other Symmetries— The Conservation
of Charge

Consider now the case of purely internal symmetries. That is, transformations which
mix the fields {4, } but have no affect upon spacetime. We can write,

o1 (x') =1 (x)= ¢ (x)+ &, Siss (%) (41)
Since &, =0, (13) becomes,



a,,{ oL saa‘zvﬁs}o (42)

Obr
And hence the conserved quantities are,
oL
NH* = —— S 43
g, St (43)
with 0,8 =0 (44)

Hence there is one conserved quantity for each value of « , corresponding to each
continuous parameter of the internal symmetry, (41). The simplest exampleis
provided by a complex field whose Lagrangian isinvariant under an arbitrary change
of phase of thefield, i.e.,

p>¢ =€ prp+ich (45a)
The Hermetian conjugate field transforms as,

¢+ _)¢r+ ze—is¢+ z¢+ —i8¢+ (45b)
Note that the field and its conjugate count as separate fields, i.e., the subscript r in

(43) takestwo values, say 1 and 2, for which S, =i and S,, =-i,and S, =0. Hence
(43) gives,

oL . oL , .
N#: — + 46
T +8M(I)¢ (46)

Suppose we have a Lagrangian whose only termsin the derivatives of these fieldsis
l + -
E(a“¢) 0" ¢ . Then (46) gives,

N# =i[(a”¢*)¢ - (aﬂgﬁ)w]z —-ig 0" g (47)

where 6 isthe antisymmetric derivative defined by (47). The Noether conserved
quantity is given by,
Q:jxod?’x:ji[mﬁ —;z+¢*]d3x (48)
where we have used the conjugate fields 7 = % = ¢ . In quantum field theory this
,0
conserved quantity can be interpreted as the electric charge (or, at least, if we multiply
by the quantum of chargeit can, X* —iep*0#¢). Thisis becauseit can be written in

terms of the number operators for particles and antiparticles, N and N2, as,
Q=e%[a§ak‘bﬁbk]=e§k:('\'k—Nf)=e(N—Na) (49)

as shown in Chapter 43. Thisis a consistent interpretation because particles and
antiparticles are oppositely charged, so the total charge isjust the difference in their

numbers, as given by (49). Consequently NX# can be interpreted as the 4-current
density.



Note that invariance under a phase change is effectively a symmetry under group
U(1). Consequently we see that the conservation of charge is due to U(1) symmetry.

L oose Ends

In discussing the interpretation of the Noether quantity conserved under boostsin
§82.3, we confined attention to the case of ascalar field. This leaves unexplained what
might be the meaning or significance of the spin dependent termin (35).
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