Chapter 13
Stationary Action: IsIt Minimum?

I sthe action minimum or maximum? Since action is defined asthe time
integral of (KE-PE), and because potential energy isa minimum in the static
case, this suggests that the action should be a maximum. But of courseit is
not (usually). Sometimestextsrefer to the Principle of Least Action, but in
truth the action is not always a minimum either. What is going on here?
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1. The Ubiquity of the Principle of Stationary Action and a Confession

In discussing unification within physics, Feynman (1964) has noted that it istrivial to
express al the laws of physics asjust one equation. It is only necessary to express
each law in the form F;({x; [)=0 where i referstothei law, F; isarranged to be real

valued, and {x; | are all the independent variables you might wish for. The Grand
Unified Theory of Everything isthen simply,
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The point that Feynman was making is that this does not constitute physical
unification in any meaningful way. It is merely an alternative way of writing the
N different ‘laws’ F; ({x; {)=0. In contrast, the principle of stationary action isatrue

unifying principle in physics. All the fundamental theories of physics can be
expressed in thisform. Whilst (1) is devoid of true content, the principle of stationary
actionisarea constraint upon physical theories. Thus, amost the whole of physics
can be written,

s[L-d"x=0 )

where n isthe dimensionality of spacetime. Thisisusually 4 if you are not a string
theorist or into Kaluza-Klein theories or m-branes. Equ.(2) iswritten in the form
suitable for field theories, whether classical or quantum fields. If we were dealing
instead with the mechanics of discrete particles, the principle of stationary action
would be,

S[L-dt=0 ©)
The Lagrangian is then defined as the difference between the kinetic energy of the
system and its potential energy,

L=KE - PE 4

In the case of fields, the Lagrange density, £, is defined in a bespoke manner for the
fields in question, but can also often be interpreted as a kinetic energy density minus a
potential energy density (where the latter may include masstermsin relativistic
cases). For both discrete particles and fields the action is defined as the integral which
is stationary,

S=[£-d"x or  S=[L-dt (5)



The variations indicated in (2) and (3), and with respect to which the action is
stationary, are variations in functions. In the case of discrete particles, the functionsin
question are the particles’ coordinates as functions of time, T, (t). In the case of field

theories, the functions in question are the fields themselves, which are functions of the
n spacetime coordinates, ¢, (xy ) Hence, for example, for non-relativistic discrete

particles, (3) is equivalent to Newton’s equations of motion for the particles. For field
theories, (2) is equivaent to the field equations, be it Maxwell’s equations of classical
el ectromagnetism, the Einstein equations of the general relativistic gravitational field,
or the field equations of particle physics. We give afew illustrationsin 83.

The theme of this Chapter is whether the action, being stationary, isamaximum or a
minimum — or neither? The strict answer is— in general — neither. However, in the
case of discrete particles the action really is a minimum so long as we do not consider
time periods which are too long (more of this nicety later).

Now in the case of staticsthereisageneral principle that an equilibrium configuration
corresponds to the minimum of potential energy. Since forces are given by the spatial
derivatives of the potential energy, and since equilibrium occurs when the net forceis
zero, it is clear that potential energy will be stationary at equilibrium. That itisa
minimum follows simply in this case from the fact that forces act in the opposite
direction from the gradient of the potential, F = -V(PE): which brings me to my

confession.

In my youth | was want to write the definition of the Lagrangian, (4), with the sign
reversed, L = PE - KE . My reasoning was that surely this dynamical principle should
reduce in the static case to the principle of minimum potential energy. But on this
basisit would seem that the definition L = KE — PE would lead to action being
maximised, not minimised. Since the texts referred to “the principle of least action” |
concluded that they must actually mean L = PE — KE . Admittedly this strikingly
arrogant conclusion, that | was right and all the texts were wrong, was accompanied
by a degree of unease: justifiably so for my conclusion was completely fallacious.
However it seems | can salvage some pride. In general the action is neither minimised
nor maximised, but merely stationary. This Chapter isintended to elucidate when the
action really is a minimum, and when not. Those familiar with the calculus of
variations and the derivation of the Euler-Lagrange equations can skip 82 and §3.

2. Calculusof Variationsin the Static Case
Consider theintegral over x of afunction f which depends both explicitly upon x

dy

and also upon afunction y(x) and itsfirst derivative, y' = 5 thus,
X

X2
P=[f(xy,y)dx (6)
X
Theintegral is defined over the fixed interval [x;,x,]. P issaid to be afunctional of
y . Considering small changesin the function, y(x)— y(x)+ 8y(x), leads to small

changesin the functional, P, and hence to the concept of afunctional derivative.
Suppose that we wish to determine the functions y(x) for which the functional P is

stationary, subject to the requirement that the values of y are fixed at the ends of the
interval: y(x;)=Yy;, ¥(x»)=Yy,. Thechangein P is,



oP = f[f (x Y+, Yy +dy)- f(xy,y)ldx= f {% S5y + %@}dx €
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where we have used a Taylor expansion. The second term on the RHS can be
transformed by integrating by parts as follows,

PN R
:{%WF ) fﬁy'%(%}”‘x ®)

Tl

noting that dy=0 at the ends of the interval due to the requirement that y(x,)=y; and
y(x, )=y, be fixed. Substituting (8) into (7) gives,
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The condition for a stationary value of P isthat &P =0 for any variationsdy inthe
function y (subject to its fixed end points). This can only be fulfilled if the integrand
of (9) vanished identically, i.e.,
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Thisis known as the Euler-Lagrange equation for the variational problem. Asan
example of its utility, consider the catenary problem. A heavy rope or chain, of
uniform weight per unit length, is suspended in a uniform gravitationa field from two
fixed points, (x;,y;) and (x,,y,), where x ishorizontal and y points vertically
upwards. We wish to find the shape of the curve adopted by the rope, y(x). The

potential energy of asmall element ds of the length of the rope is proportional to its
mass, hence to ds, and also proportional to its vertical height from some arbitrary
datum. So setting g =1 and for arope with unit mass per unit length, we have,

X2
P=[yds (11)
X2
However, the length of the ropeis also afixed constraint, i.e., S= jds isagiven.
X
Imposing this constraint by the method of Lagrange multipliers, we therefore wish to
find y(x) such that,

X2

= [(y-4)ds (12)

*

is stationary, where A is some constant. The element of length is given by,



2
ds=+/dx? +dy? = 1+(%) dx=4/1+y'? -dx (13)
\ X

So the unconstrained functional whose extremum is sought, P | is,

)

P=[(y-AW1+y? -dx (14)
X

Now apply the Euler-Lagrange equation, (10), to thisintegrand and simplify to give,
(y-A)y"-y?-1=0 (15)
It isreadily checked by substitution that the solution to (15) is,

X— X

y(x)= 1+ A cosh (16)

where the constants 1, A, x, are found by imposing the end conditions y(x;)=y; and
X2

y(x,)=,, and the specified ropelength, S= [{1+y'? - dx. Equ.(16) shows that the
X

catenary is ahyperbolic cosine.
3. Dynamic and Field Equations Derived from Stationary Action

The Lagrangian formulation of dynamics has a fearsome reputation amongst
undergraduates. It really should not have. The essence of the formulation isreally
quite elementary (though, like virtually any subject in physics, full mathematical
rigour will certainly make things more difficult). For the motion of asingle particlein
one dimension we merely reinterpret x in (6) astime,t, and reinterpret the potential
energy asthe Lagrangian, i.e., the difference L = KE - PE . Hence for asingle particle
moving along the y axisin apotential given by V(y) the action s,

SZIB . —v(y)}dt (17)

To follow the usual convention we have denoted the time derivative by y, but it
essentially meansthe same asy’ in 82. The Euler-Lagrange equation is thus,

2 18
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which isjust Newton’s law of motion because the RHS is the force acting on the
particle. Now consider N particles moving in three spatial dimensions, the|™ particle
having mass m; and position vector r; . The potential function is assumed to be

V({F; J)- Note that this might be a combination of an externally applied force field

together with an interaction between the particles provided that this depends only
upon their distance apart (e.g., the electrostatic force in the non-relativistic limit). The
actionis,

szﬂgzmw if })]dt 19



Each of the 3N degrees of freedom has its own Euler-Lagrange equation, yielding,

mJ er - (20)
This assumes that the coordinates of all the particles are specified at the two times t;
and t,, but of course the same equations of motion, (20), will apply if we choose

alternative boundary conditions, such as specifying the coordinates and velocities at
time t; only.

The stationary action principle for fieldsis essentialy similar but the single
independent variable (x or t) isreplaced by n independent variables, x,,, generally

the four coordinates of familiar spacetime. The dependent functions are thus ¢; (x " ) ,
and there may be any number, N , of independent fields, each defined over the n-
dimensional spacetime. Asin the preceding examples, the Lagrange density is

assumed to depend on x,,, ¢;(x, ) and thefirst derivatives of the fields, ¢, * = af’ :
]

only. Hence we write,
S=clx,.4;.4;") d*x (21)
r

Here T is some specified, and fixed, region of spacetime on which the fields take
specified, and fixed, values. If T is chosen to be the whole of spacetime, asit ofteniis,
then there will be some criteria to ensure convergence of (21), such asthe fields
reducing to zero sufficiently quickly at infinity. The principle of stationary action is
the requirement that (21) be stationary, 5S=0, with respect to variations

¢; — ¢; +p; obeying the boundary conditionson T, i.e., such that 5¢;(I")=0. The

Euler-Lagrange equations are derived as before,

| [l +0;.0, " +5¢j,~)—.c(x,,,¢j.¢j,ﬂ)}.d4x
I

(22)
= —5¢J P 59, " d*x
r| % op,"

where, in the last line, we are using the usual convention that repeated indices are
summed. The second term can be evaluated by parts, as before,
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5¢jd4x (23)
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U
by virtue of 64; (I")=0. Hence, substituting (23) into (22) and equating the factor of
5¢; to zero, since the latter are arbitrary variations, gives the Euler-Lagrange
equations,

o _ 0 oL (24)
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So there is one such equation for each of the N fields, ¢; , and the RHS involves the
sum over n terms. An exampleisthe scalar field, for which the Lagrange density is,
L=0"¢"-0,4-m?|g (25)
For which the Euler-L agrange equations are the Klein-Gordon equation for the field
and its conjugate,
2 +m2p=0ad (2+m2)p =0 (26)

Similarly the reader may like to show that the Dirac equation, and its adjoint, follow
from the Lagrange density,

c=iliya, -mly 27)

Maxwell’s equations for a 4-vector current source J* follow from the Lagrange
density,

1 14 14
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where the action is stationary with respect to variations in the four-vector potential
A,, and the electromagnetic field is defined subsequently via F,, =0 ,A, -9, A,, .
Note that in (27) and (28) we haveused 7=c=1.

4. A Simple Examplein Classical Dynamics

We now return to the issue of whether the stationary action can be regarded as |least
action. We shall firstly consider classical, simple harmonic motion in one dimension.
The Lagrangian is,

L %(xz - x2) (29)

where we have assumed unit mass and also a ‘spring constant” of unity, i.e., unit force
per unit displacement. The Euler-Lagrange equation of motion is, as we would expect,

X=—X (30)
If released from rest at unit displacement at time zero the solution is therefore,
X = cost (31)

Asfar asthe formulation of the variational problem is concerned, we can suppose that
we specified unit displacement at time zero together with zero displacement at time
t=/2, which gives the same solution. So the action is,

sz”f%(-Z - x2 (32)

Substitution of (31) into (32) shows that the action in this caseis zero. Asasimple
investigation of whether variations produce an increase or a decrease in the action,
consider x(t) to be varied thus,

x(t)=cost + 1sin2t (33)



This continues to respect the boundary conditions since the sine term vanishes at both
t=0 and t=/2. Substitution of (33) into (32) and carrying out the integrations
gives,

5=37 2 (34)
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Thetermslinear in 4 cancel. Hence, irrespective of what sign we choose for the
amplitude of the variation, 4, the action isincreased by the variation (33), recalling
that the solution, (30), has zero action. Thisis consistent with the claim that the action
isaminimum. Of courseg, thisisjust an illustration and does not prove that any
variation in x(t) will result in an increased action. Thisis considered next.

5. Least Action in Discrete Classical Particle Dynamics

5.1 A Necessary Criterion for Least Action

To begin with consider a single particle moving in one dimension so that the action is
S= th x(t), (1)) dt . Considering avariation in x(t) induces a variation in the action

t
of,

5S= j[a" X+ %5} dt (35)
oX

Setting thisto zero will lead to the Euler-Lagrange equation for an extremum, as we

have seen. From our knowledge of ordinary cal culus we expect minima and maxima

to be distinguished by the sign of the second derivative. Specifically aminimum s

expected to be indicated by §2S> 0. So consider the second functional derivative,

G, |_ o%L %L,
52S= j[@x ) +2axaxa‘5x+ax2 (§x)2:|.dt (36)

Noting that sxsx = %%(5)()2 the second term in (36) can be transformed by integrating

by parts asfollows,

o, 2
jzﬁaa dt=| — o°L ()P - d/oL ()% - dt (37)
i OXOX XX b dt | oxox
The first term on the RHS is zero due to the boundary conditions. So (36) becomes,
2 o%L
5%s=| l:Q(x)(éx)z + —2(55()2} dt (38)
" ox
o%L df %L
where, L =-_Z|Z2= 39
Q(X) ox? dt(@x@)‘(] (39)

It might be tempting to conclude that Q isidentically zero at an extremum in view of

the Euler-Lagrange equation a_ dg( ZL
X

oX
commute the time derivative with the partia derivative with respect to x, which is not

] but this would suppose that we could



true. However even for non-zero Q anecessary condition that §2S>0 for any

variation &x(t) obeying the boundary conditionsis that the coefficient of (5x)? in (38)
be non-negative at al points over the integration range,

2
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The proof can be found in Gelfand and Fomin (1963), 825. Heuristically the reason
2

for this can be seen as follows. Suppose that Z—L‘ <0 over some region of the
X

integration range. We need only contrive avariation &x(t) which has alarge gradient
over thisregion compared to elsewhere, and a small value el sawhere, to conclude that

2
the integral (38) would be negative. This can only be avoided if % >0 at al
X
integration points. QED. Take careful note that (40) isonly claimed to be a necessary
criterion for the action to be a minimum. We shall come to the sufficient criterion

shortly.

For asingle particle, defining the Lagrangian as L = KE - PE and since KE =%m>‘<2 :
the criterion (40) is simply that the mass be non-negative, m>0. So, consistent with
theillustration in 84, things are looking favourable for demonstrating that the
conventional definition of the action, via L = KE — PE , does lead to action being a
minimum, not a maximum as | erroneously thought.

The criterion (40) generalisesto the case of N particlesin three dimensional space.
We now have a matrix of second derivatives with respect to the velocities,

_0%L
O 500t

K (41)
where the capital subscripts range over the 3N values of particle-plus-direction, i.e.,
J=ja, K=kb,where j,ke[l,N] and a,be[13]. The generalisation of criterion (40)
is that the determinant of this matrix be non-zero when evaluated at any point along
the trajectories determined by the Euler-Lagrange equations of motion, i.e.,

§%S>0=>|M||> 0 along the extremum trajectories (42)

For non-relativistic dynamicsin a potential field and in Cartesian coordinates, the
actionisgiven by (19) and so M isadiagona matrix whose elements are the particle
masses. Hence |M | >0 isassured. So it islooking rather like action isaminimum for

discrete particle dynamics. But there is a catch.
5.2 Sufficient Conditionsfor Least Action in Discrete Particle Dynamics

The rigorous conditions which are sufficient to ensure that the extremum given by a
solution of the Euler-Lagrange equations is actually a minimum of the action are
complex in general and the reader isreferred to Gelfand and Fomin (1963) or a
similar text on the calculus of variations. However the essence of the matter is
captured by three conditions,

(i) The Euler-Lagrange equations are obeyed (and hence the action is stationary);



(ii) The determinant of the matrix of second derivatives wrt the gradientsis strictly
positive definite when evaluated on the extremals, |[M| >0;

(i) The integration region contains no points conjugate to the end points.

The last criterion introduces the concept of a conjugate point’. Roughly speaking two
points (times) are conjugate if their use as ends points of the action integral does not
uniquely determine the solution. (Thisis my rough paraphrasing. | hope
mathematicians are not shuddering too much). For example, the geodesic on the
surface of a sphere, which minimises the path length between two points, is uniquely
determined by the two points except in the case of points which are diametrically
opposite. These are conjugate points since thereis amultiplicity of different great arcs
connecting them. Another example is provided by simple harmonic motion when the
displacement is specified as zero at times differing by an integral multiple of the half-
period. This clearly does not suffice to determine the amplitude of the motion.

In practical applications to discrete particle dynamics this subtlety may matter little.
Adoption of adifferent integration range may establish a solution to be a strict
minimum of the action. In the last example, adoption of any range of times less than
the half-period will suffice.

However we see in this the beginnings of a problem for continua, for the dynamics of
fields. The spectrum of continuawill usually have no finite upper bound frequency.
Consequently we may anticipate that the problem posed by criterion (iii) might be
insuperable for fields because any time period, however short, will exceed the half-
period for some frequencies. So we may also anticipate that, in the case of fields, the
principle of stationary action may fail to be a principle of least action. Thisis correct
and isillustrated next.

6. The Massless Real Scalar Field
In the case of just one field, the variation of the action, (22), becomes,

_ [l ot oL cp g4
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The second derivativeis,
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Consider areal scalar field with zero mass whose Lagrange density is,
1 17, = |2
£=§8”¢-8y¢25[¢2 -V } (45)

The corresponding Euler-Lagrange equation is just the wave equation, the massless
limit of the Klein-Gordon equation,

024
V3p="1 46
¢ poe; (46)
Because this Lagrange density does not depend upon the field, ¢ , but only upon its

2
derivatives, thefirst two termsin (44) are zero. In the third term we have & =1

og?
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whereas for the spatial derivatives 0 L2 =-1. Hence the second derivative of the

0p;
actionis,

52s=| [(5;;3)2 - W&qﬁ‘z}d“x (47)

So it follows that, since 8¢ is arbitrary, and since the two terms in (47) contribute to

the integral with opposite signs, S may be of either sign. Consequently we are not
entitled to clam that the wave equation, (46), ensures that the action corresponding to
(45) isaminimum. We can only refer to the wave equation as an extremum of this
action.

Itis clear from (47) that the origin of the problem is the contribution to the ‘potential
energy’ from the spatial derivatives of the field. Thisis ageneric property of field
Lagrangians. In fact it isunavoidable in Lorentz invariant (i.e., relativistic) theories,

since ¢ cannot occur except as part of ¢, and this must be converted to a Lorentz
scalar by contraction with some other 4-vector, e.g., ¢ , itself. Itisthusthe
Minkowski metric which results in the minus sign in (47) which is the source of the
problem. Hence we cannot guarantee the sign of §2S in field theory and so we should
speak only of astationary action principle for fields, not least action.

In the competition between the temporal and spatial derivativesin (47) asregardsthe

sign of §2S we can see, at last, the explanation for my earlier difficulty regarding
whether the correct definition of action should use KE — PE or PE - KE. To seethis
we return to the catenary, but now alow it to vibrate so as to introduce dynamics into
the problem.

7. The Vibrating Catenary
Firstly, note that in the static problem of the catenary, we can now see that potential
energy isminimised, aswe knew it must be. The action, (14) is

~ X
P=[(y—AW1+y? -dx. The second derivative of theintegrand with respect to y’ is
X
y—-A4

3
(1+ y’z)/2
Now consider a catenary whichis allowed to vibrate in the vertical direction. Each
element of length has kinetic energy = y25m y2y1+y'2 - . So, adopting

which is positive by virtue of the solution (16), which must have A >0.

alLagrangian KE - PE givesthe actlon,

%

S= ”[ yZ —(y- /1} )1+ y'? - dxdt (48)

X
By adopting the sign KE - PE for the integrand, its second derivative wrt y, whichis
just 1+ y'? , is positive and hence fulfils (this part of) the requirement for the action



.2
to be aminimum. In contrast, the second derivativewrt y’, which is O'Sy_—(y;’l)
(1+ y'2)2
is of indeterminate sign, and will be negative for small velocities. But we should no
longer be surprised by this outcome. We have aready seen in 86 that for dynamic
continuum problems, the sign of the quadratic time derivative and the quadratic
spatial derivatives will generally be opposite, and this results in the extremum being
neither a minimum nor a maximum in general.

8. Conclusion

Whilst my youthful presumption that PE — KE was to be preferred over KE — PE was
certainly wrong, | am partly vindicated by the failure of either to define a principle of
least action. In general, for continuum (field) theories, action isonly stationary.
However, barring certain subtleties discussed in 85.2, the case of discrete particles
does provide a principle of |east action.
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