
Chapter 13 

Stationary Action: Is It Minimum? 

Is the action minimum or maximum? Since action is defined as the time 
integral of (KE-PE), and because potential energy is a minimum in the static 
case, this suggests that the action should be a maximum. But of course it is 
not (usually). Sometimes texts refer to the Principle of Least Action, but in 
truth the action is not always a minimum either. What is going on here? 

Last Update: 22/3/12  

1. The Ubiquity of the Principle of Stationary Action and a Confession 

In discussing unification within physics, Feynman (1964) has noted that it is trivial to 
express all the laws of physics as just one equation. It is only necessary to express 
each law in the form 0ji xF  where i  refers to the ith law, iF  is arranged to be real 

valued, and jx  are all the independent variables you might wish for. The Grand 

Unified Theory of Everything is then simply,      
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The point that Feynman was making is that this does not constitute physical 
unification in any meaningful way. It is merely an alternative way of writing the 
N different laws 0ji xF . In contrast, the principle of stationary action is a true 

unifying principle in physics. All the fundamental theories of physics can be 
expressed in this form. Whilst (1) is devoid of true content, the principle of stationary 
action is a real constraint upon physical theories. Thus, almost the whole of physics 
can be written,      
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where n  is the dimensionality of spacetime. This is usually 4 if you are not a string 
theorist or into Kaluza-Klein theories or m-branes. Equ.(2) is written in the form 
suitable for field theories, whether classical or quantum fields. If we were dealing 
instead with the mechanics of discrete particles, the principle of stationary action 
would be,      
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The Lagrangian is then defined as the difference between the kinetic energy of the 
system and its potential energy,      

PEKEL

     

(4) 

In the case of fields, the Lagrange density, , is defined in a bespoke manner for the 
fields in question, but can also often be interpreted as a kinetic energy density minus a 
potential energy density (where the latter may include mass terms in relativistic 
cases). For both discrete particles and fields the action is defined as the integral which 
is stationary,     
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or dtLS   (5) 



The variations indicated in (2) and (3), and with respect to which the action is 
stationary, are variations in functions. In the case of discrete particles, the functions in 
question are the particles coordinates as functions of time, tr j . In the case of field 

theories, the functions in question are the fields themselves, which are functions of the 
n  spacetime coordinates, xj . Hence, for example, for non-relativistic discrete 

particles, (3) is equivalent to Newton s equations of motion for the particles. For field 
theories, (2) is equivalent to the field equations, be it Maxwell s equations of classical 
electromagnetism, the Einstein equations of the general relativistic gravitational field, 
or the field equations of particle physics. We give a few illustrations in §3. 

The theme of this Chapter is whether the action, being stationary, is a maximum or a 
minimum  or neither? The strict answer is 

 

in general  neither. However, in the 
case of discrete particles the action really is a minimum so long as we do not consider 
time periods which are too long (more of this nicety later).  

Now in the case of statics there is a general principle that an equilibrium configuration 
corresponds to the minimum of potential energy. Since forces are given by the spatial 
derivatives of the potential energy, and since equilibrium occurs when the net force is 
zero, it is clear that potential energy will be stationary at equilibrium. That it is a 
minimum follows simply in this case from the fact that forces act in the opposite 
direction from the gradient of the potential, PEF : which brings me to my 
confession.  

In my youth I was want to write the definition of the Lagrangian, (4), with the sign 
reversed, KEPEL . My reasoning was that surely this dynamical principle should 
reduce in the static case to the principle of minimum potential energy. But on this 
basis it would seem that the definition PEKEL  would lead to action being 
maximised, not minimised. Since the texts referred to the principle of least action I 
concluded that they must actually mean KEPEL . Admittedly this strikingly 
arrogant conclusion, that I was right and all the texts were wrong, was accompanied 
by a degree of unease: justifiably so for my conclusion was completely fallacious. 
However it seems I can salvage some pride. In general the action is neither minimised 
nor maximised, but merely stationary. This Chapter is intended to elucidate when the 
action really is a minimum, and when not. Those familiar with the calculus of 
variations and the derivation of the Euler-Lagrange equations can skip §2 and §3. 

2. Calculus of Variations in the Static Case 

Consider the integral over x  of a function f  which depends both explicitly upon x

 

and also upon a function xy  and its first derivative, 
dx

dy
y , thus,     
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The integral is defined over the fixed interval 21, xx . P  is said to be a functional of 
y . Considering small changes in the function, xyxyxy , leads to small 
changes in the functional, P , and hence to the concept of a functional derivative. 
Suppose that we wish to determine the functions xy  for which the functional P  is 
stationary, subject to the requirement that the values of y  are fixed at the ends of the 
interval: 11 yxy , 22 yxy . The change in P  is, 
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where we have used a Taylor expansion. The second term on the RHS can be 
transformed by integrating by parts as follows,   
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noting that 0y  at the ends of the interval due to the requirement that 11 yxy  and  

22 yxy be fixed. Substituting (8) into (7) gives,     
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The condition for a stationary value of P  is that 0P  for any variations y  in the 
function y  (subject to its fixed end points). This can only be fulfilled if the integrand 
of (9) vanished identically, i.e.,     

y

f

dx

d

y

f     
           (10) 

This is known as the Euler-Lagrange equation for the variational problem. As an 
example of its utility, consider the catenary problem. A heavy rope or chain, of 
uniform weight per unit length, is suspended in a uniform gravitational field from two 
fixed points, 11, yx  and 22 , yx , where x  is horizontal and y  points vertically 
upwards. We wish to find the shape of the curve adopted by the rope, xy . The 
potential energy of a small element ds  of the length of the rope is proportional to its 
mass, hence to ds , and also proportional to its vertical height from some arbitrary 
datum. So setting 1g  and for a rope with unit mass per unit length, we have,     
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However, the length of the rope is also a fixed constraint, i.e., 
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dsS  is a given. 

Imposing this constraint by the method of Lagrange multipliers, we therefore wish to 
find xy  such that,     
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is stationary, where  is some constant. The element of length is given by, 
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So the unconstrained functional whose extremum is sought, P
~

, is,     
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Now apply the Euler-Lagrange equation, (10), to this integrand and simplify to give,     
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It is readily checked by substitution that the solution to (15) is,     

0cosh
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           (16) 

where the constants 0,, x  are found by imposing the end conditions 11 yxy  and  

22 yxy , and the specified rope length, 
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x
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dxyS . Equ.(16) shows that the 

catenary is a hyperbolic cosine.  

3. Dynamic and Field Equations Derived from Stationary Action 

The Lagrangian formulation of dynamics has a fearsome reputation amongst 
undergraduates. It really should not have. The essence of the formulation is really 
quite elementary (though, like virtually any subject in physics, full mathematical 
rigour will certainly make things more difficult). For the motion of a single particle in 
one dimension we merely reinterpret x  in (6) as time, t , and reinterpret the potential 
energy as the Lagrangian, i.e., the difference PEKEL . Hence for a single particle 
moving along the y  axis in a potential given by yV  the action is,     
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To follow the usual convention we have denoted the time derivative by y , but it 
essentially means the same as y  in §2. The Euler-Lagrange equation is thus,     
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which is just Newton s law of motion because the RHS is the force acting on the 
particle. Now consider N  particles moving in three spatial dimensions, the jth particle 
having mass jm and position vector jr . The potential function is assumed to be 

jrV . Note that this might be a combination of an externally applied force field 

together with an interaction between the particles provided that this depends only 
upon their distance apart (e.g., the electrostatic force in the non-relativistic limit). The 
action is,     
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Each of the N3  degrees of freedom has its own Euler-Lagrange equation, yielding,     
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This assumes that the coordinates of all the particles are specified at the two times 1t 

and 2t , but of course the same equations of motion, (20), will apply if we choose 
alternative boundary conditions, such as specifying the coordinates and velocities at 
time 1t  only.  

The stationary action principle for fields is essentially similar but the single 
independent variable ( x  or t ) is replaced by n  independent variables, x , generally 

the four coordinates of familiar spacetime. The dependent functions are thus xj  , 

and there may be any number, N , of independent fields, each defined over the n -
dimensional spacetime. As in the preceding examples, the Lagrange density is 

assumed to depend on x , xj  and the first derivatives of the fields, 
x

j
j, , 

only. Hence we write,     
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Here  is some specified, and fixed, region of spacetime on which the fields take 
specified, and fixed, values. If  is chosen to be the whole of spacetime, as it often is, 
then there will be some criteria to ensure convergence of (21), such as the fields 
reducing to zero sufficiently quickly at infinity. The principle of stationary action is 
the requirement that (21) be stationary, 0S , with respect to variations 

jjj  obeying the boundary conditions on , i.e., such that 0j . The 

Euler-Lagrange equations are derived as before,   
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where, in the last line, we are using the usual convention that repeated indices are 
summed. The second term can be evaluated by parts, as before,    
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by virtue of 0j . Hence, substituting (23) into (22) and equating the factor of 

j  to zero, since the latter are arbitrary variations, gives the Euler-Lagrange 

equations,     
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So there is one such equation for each of the N  fields, j , and the RHS involves the 

sum over n  terms. An example is the scalar field, for which the Lagrange density is,     

22* m
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For which the Euler-Lagrange equations are the Klein-Gordon equation for the field 
and its conjugate,    

022 m and 0*22 m             (26) 

Similarly the reader may like to show that the Dirac equation, and its adjoint, follow 
from the Lagrange density,     

mi
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Maxwell s equations for a 4-vector current source J  follow from the Lagrange 
density,    
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where the action is stationary with respect to variations in the four-vector potential 
A  and the electromagnetic field is defined subsequently via AAF . 

Note that in (27) and (28) we have used 1c .  

4. A Simple Example in Classical Dynamics 

We now return to the issue of whether the stationary action can be regarded as least 
action. We shall firstly consider classical, simple harmonic motion in one dimension. 
The Lagrangian is,     
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where we have assumed unit mass and also a spring constant of unity, i.e., unit force 
per unit displacement. The Euler-Lagrange equation of motion is, as we would expect,     
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           (30) 

If released from rest at unit displacement at time zero the solution is therefore,     

tx cos
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As far as the formulation of the variational problem is concerned, we can suppose that 
we specified unit displacement at time zero together with zero displacement at time 

2/t , which gives the same solution. So the action is,     

dtxxS
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Substitution of (31) into (32) shows that the action in this case is zero. As a simple 
investigation of whether variations produce an increase or a decrease in the action, 
consider tx  to be varied thus,     

tttx 2sincos
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This continues to respect the boundary conditions since the sine term vanishes at both 
0t  and 2/t . Substitution of (33) into (32) and carrying out the integrations 

gives,     
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The terms linear in  cancel. Hence, irrespective of what sign we choose for the 
amplitude of the variation, , the action is increased by the variation (33), recalling 
that the solution, (30), has zero action. This is consistent with the claim that the action 
is a minimum. Of course, this is just an illustration and does not prove that any 
variation in tx  will result in an increased action. This is considered next. 

5. Least Action in Discrete Classical Particle Dynamics 

5.1 A Necessary Criterion for Least Action 

To begin with consider a single particle moving in one dimension so that the action is 
2
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dttxtxtLS . Considering a variation in tx  induces a variation in the action 

of, 
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Setting this to zero will lead to the Euler-Lagrange equation for an extremum, as we 
have seen. From our knowledge of ordinary calculus we expect minima and maxima 
to be distinguished by the sign of the second derivative. Specifically a minimum is 

expected to be indicated by 02S . So consider the second functional derivative,  
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Noting that 2

2
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d
xx  the second term in (36) can be transformed by integrating 

by parts as follows, 
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The first term on the RHS is zero due to the boundary conditions. So (36) becomes, 
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where,    
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It might be tempting to conclude that Q  is identically zero at an extremum in view of 

the Euler-Lagrange equation 
x

L

dt

d

x

L
, but this would suppose that we could 

commute the time derivative with the partial derivative with respect to x , which is not 



true. However even for non-zero Q  a necessary condition that 02S  for any 

variation tx  obeying the boundary conditions is that the coefficient of 2x  in (38) 
be non-negative at all points over the integration range, 
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The proof can be found in Gelfand and Fomin (1963), §25. Heuristically the reason 

for this can be seen as follows. Suppose that 0
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 over some region of the 

integration range. We need only contrive a variation tx  which has a large gradient 
over this region compared to elsewhere, and a small value elsewhere, to conclude that 

the integral (38) would be negative. This can only be avoided if 0
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integration points. QED. Take careful note that (40) is only claimed to be a necessary 
criterion for the action to be a minimum. We shall come to the sufficient criterion 
shortly. 

For a single particle, defining the Lagrangian as PEKEL  and since 2
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the criterion (40) is simply that the mass be non-negative, 0m . So, consistent with 
the illustration in §4, things are looking favourable for demonstrating that the 
conventional definition of the action, via PEKEL , does lead to action being a 
minimum, not a maximum as I erroneously thought.  

The criterion (40) generalises to the case of N  particles in three dimensional space.  
We now have a matrix of second derivatives with respect to the velocities,     
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where the capital subscripts range over the N3  values of particle-plus-direction, i.e., 
jaJ , kbK , where Nkj ,1,  and 3,1,ba . The generalisation of criterion (40) 

is that the determinant of this matrix be non-zero when evaluated at any point along 
the trajectories determined by the Euler-Lagrange equations of motion, i.e.,     
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along the extremum trajectories              (42) 

For non-relativistic dynamics in a potential field and in Cartesian coordinates, the 
action is given by (19) and so M  is a diagonal matrix whose elements are the particle 
masses. Hence 0M  is assured. So it is looking rather like action is a minimum for 

discrete particle dynamics. But there is a catch. 

5.2 Sufficient Conditions for Least Action in Discrete Particle Dynamics 

The rigorous conditions which are sufficient to ensure that the extremum given by a 
solution of the Euler-Lagrange equations is actually a minimum of the action are 
complex in general and the reader is referred to Gelfand and Fomin (1963) or a 
similar text on the calculus of variations. However the essence of the matter is 
captured by three conditions, 

(i) The Euler-Lagrange equations are obeyed (and hence the action is stationary); 



(ii) The determinant of the matrix of second derivatives wrt the gradients is strictly 
positive definite when evaluated on the extremals, 0M ; 

(iii) The integration region contains no points conjugate to the end points. 

The last criterion introduces the concept of a conjugate point . Roughly speaking two 
points (times) are conjugate if their use as ends points of the action integral does not 
uniquely determine the solution. (This is my rough paraphrasing. I hope 
mathematicians are not shuddering too much). For example, the geodesic on the 
surface of a sphere, which minimises the path length between two points, is uniquely 
determined by the two points except in the case of points which are diametrically 
opposite. These are conjugate points since there is a multiplicity of different great arcs 
connecting them. Another example is provided by simple harmonic motion when the 
displacement is specified as zero at times differing by an integral multiple of the half-
period. This clearly does not suffice to determine the amplitude of the motion.  

In practical applications to discrete particle dynamics this subtlety may matter little. 
Adoption of a different integration range may establish a solution to be a strict 
minimum of the action. In the last example, adoption of any range of times less than 
the half-period will suffice.  

However we see in this the beginnings of a problem for continua, for the dynamics of 
fields. The spectrum of continua will usually have no finite upper bound frequency. 
Consequently we may anticipate that the problem posed by criterion (iii) might be 
insuperable for fields because any time period, however short, will exceed the half-
period for some frequencies. So we may also anticipate that, in the case of fields, the 
principle of stationary action may fail to be a principle of least action. This is correct 
and is illustrated next. 

6. The Massless Real Scalar Field 

In the case of just one field, the variation of the action, (22), becomes,     
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The second derivative is,   
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Consider a real scalar field with zero mass whose Lagrange density is,     
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The corresponding Euler-Lagrange equation is just the wave equation, the massless 
limit of the Klein-Gordon equation,     
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Because this Lagrange density does not depend upon the field, , but only upon its 

derivatives, the first two terms in (44) are zero. In the third term we have 1
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whereas for the spatial derivatives 1
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action is,     
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So it follows that, since  is arbitrary, and since the two terms in (47) contribute to 

the integral with opposite signs, S2  may be of either sign. Consequently we are not 
entitled to claim that the wave equation, (46), ensures that the action corresponding to 
(45) is a minimum. We can only refer to the wave equation as an extremum of this 
action.  

It is clear from (47) that the origin of the problem is the contribution to the potential 
energy from the spatial derivatives of the field. This is a generic property of field 
Lagrangians. In fact it is unavoidable in Lorentz invariant (i.e., relativistic) theories, 

since  cannot occur except as part of , , and this must be converted to a Lorentz 
scalar by contraction with some other 4-vector, e.g., ,  itself. It is thus the 

Minkowski metric which results in the minus sign in (47) which is the source of the 

problem. Hence we cannot guarantee the sign of S2  in field theory and so we should 
speak only of a stationary action principle for fields, not least action.  

In the competition between the temporal and spatial derivatives in (47) as regards the 

sign of S2  we can see, at last, the explanation for my earlier difficulty regarding 
whether the correct definition of action should use PEKE  or KEPE . To see this 
we return to the catenary, but now allow it to vibrate so as to introduce dynamics into 
the problem. 

7. The Vibrating Catenary 

Firstly, note that in the static problem of the catenary, we can now see that potential 
energy is minimised, as we knew it must be. The action, (14) is 
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which is positive by virtue of the solution (16), which must have 0 .  

Now consider a catenary which is allowed to vibrate in the vertical direction. Each 

element of length has kinetic energy xyysymy 2222 1
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a Lagrangian PEKE

 

gives the action,    
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By adopting the sign PEKE  for the integrand, its second derivative wrt y , which is 

just 21 y , is positive and hence fulfils (this part of) the requirement for the action 



to be a minimum. In contrast, the second derivative wrt y , which is 
2

3
2

2

1

5.0

y

yy
, 

is of indeterminate sign, and will be negative for small velocities. But we should no 
longer be surprised by this outcome. We have already seen in §6 that for dynamic 
continuum problems, the sign of the quadratic time derivative and the quadratic 
spatial derivatives will generally be opposite, and this results in the extremum being 
neither a minimum nor a maximum in general.  

8. Conclusion 

Whilst my youthful presumption that KEPE  was to be preferred over PEKE  was 
certainly wrong, I am partly vindicated by the failure of either to define a principle of 
least action. In general, for continuum (field) theories, action is only stationary. 
However, barring certain subtleties discussed in §5.2, the case of discrete particles 
does provide a principle of least action. 
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