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Chapter 11 

A Free Lunch Called The Universe

 
Key features of the Big Bang are derived in an elementary manner: the critical 

density, the expansion rate, the time-temperature relation and the cosmic 
microwave background temperature. The horizon problem and the flatness problem 

are described. 

Last update: 12/2/12 

1. Introduction 

I have a confession to make. For a very long time I refused to take cosmology 
seriously. My misguided position was that extrapolating so far from known and 
validated physics was preposterous. I changed my mind only when a period of 
convalescence gave me time to read Weinberg s The First Three Minutes, which had 
been sitting on my bookshelf for years. It is just not true that one must extrapolate so 
very wildly from secure theory. It rather depends upon when you wish to start the 
clock running. What I had not appreciated was that certain key features of the Big 
Bang follow from the most elementary, and hence compelling, of arguments. The aim 
of this chapter is to reprise these elementary arguments, eschewing both rigour and 
relativity in favour of simplicity. Cosmologists may squirm as much as they like, I am 
unrepentant. Chapter 23 will make up for these shortcomings with the relativistic 
story and also a discussion of dark energy which will be ignored here. 

Inevitably the story starts in the middle. It is not yet possible to start the story of the 
universe at the beginning, though it may be one day. Many of the world s most able 
physicists toil to extend physical theory to apply even at the moment of creation. To 
disguise their hubris, this endeavour is given the code name quantum gravity . Our 
purpose is far more modest. We shall pick up the story, say, one-hundredth of a 
second after the big bang. The universe was then simpler than it had been before and 
simpler than it will be again.  

What exactly was the Big Bang? It will suffice for now to say that the Big Bang was 
the origin of the universe in an extremely hot, dense state and in which the 
constituents of the universe were flying away from each other at very high speeds. 
The idea seems arbitrary at first, but we shall see that it has an inevitability about it. 
Of course the Big Bang hypothesis is supported by a substantial body of observational 
evidence, not least the observed Hubble flow, the light-element constitution of the 
universe, and the cosmic microwave background. But for me the road to Damascus 
was provided by the elementary theoretical arguments presented below.  

2. The Critical Density 

Envisage a region, R, large compared with galactic superclusters, sufficiently large 
that the mean density of matter enclosed ( ) is representative of the universe as a 
whole. In addition to the rest-mass density (of both ordinary matter and any dark 
matter ), this  also includes the mass equivalent of the positive energies . The 
positive energies , are the radiation field energies (photons, neutrinos) plus the 

kinetic energy of the massive particles. What is excluded from the positive energies is 
the (negative) gravitational potential energy. This is negative because gravity is 
attractive, so the gravitational energy associated with two bodies in proximity must be 
less than when they are far apart. But the latter is zero, so the former is negative. 
Hence, we shall take the galactic masses plus the positive energies as constituting our 
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total mean density, . All this acts as a source of gravity. Thus, within a sphere of 

radius R, the gravitating mass is 3)3/4( RM . The non-relativistic gravitational 
potential energy associated with a galaxy of mass m situated at the edge of the sphere 
of radius R is therefore,    
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If the region is expanding then R is a function of time and the expansion corresponds 
to a velocity

 

Rv  (the reason for the inverted commas will emerge shortly). The 
Hubble parameter is defined as, 

tRtvtH /

    

(2) 

where the time dependence of all quantities is displayed explicitly. As defined here 
the parameter tH  is specific to the chosen region of size R at the specified epoch, t. 
However the homogeneity and isotropy of the universe on a large scale means that the 
same tH  will apply to any sufficiently large region at the specified time assuming 
the homogeneity is to persist.  

Using (1) and (2), the total non-relativistic energy of our chosen galaxy is thus,   
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Note that although we have called this the total energy, it is only the sum of the non-
relativistic kinetic energy and potential energy. There is no rest-mass energy included 
in (3). Hence it does not relate to the universe s density if divided by c2. Nevertheless 
we shall see in Chapter 23 that a relativistic treatment leads to essentially this same 
expression (in the absence of dark energy). In the relativistic treatment, this 
expression is also a constant of the motion but, rather than being interpreted as 
energy, it is the curvature of space. 

Equation (3) assumes that the Hubble velocity, HRv , is the only significant motion 
of the typical galaxy. In addition to the tendency to move with the Hubble flow , 
stars and galaxies will have their own local (peculiar) motions superimposed.  These 
additional local movements have been assumed to be slow compared with the Hubble 
speed. Dominance of the Hubble flow over the peculiar motion is inevitable so long 
as a large enough distance, R, is considered simply by virtue of HRv .  

[It is perhaps worth pausing to justify this point. Consider these local speeds: the 
earth s speed in its orbit around the sun is 30 km/s; the sun s speed in its orbit around 
the milky way is about 250 km/s; the milky way s speed with respect to the centre of 
the local group of galaxies is about 300 km/s. Suppose these conspire to give a local 
speed of nearly 600 km/s. Since the Hubble parameter is 71 km/s/Mps = 22 
km/s/Mlyr, it follows that the Hubble flow speed will be comparable, i.e., 600 km/s, 
at a distance of 600 / 22 = 27 Mlyr. The typical diameter of a spiral galaxy is 100 to 
150 klyr. The typical size of a cluster of galaxies is ~5 Mlyr, whilst clusters of clusters 
of galaxies are ~20 Mlyr in size. Finally, the thread-like filaments which comprise the 
largest non-uniform structure in the universe, the superclusters, are several hundreds 
of Mlyr in length. Hence, the size scale on which the universe can be regarded as 
uniform is of the order of hundreds of Mlyr. Thus, if R is sufficiently large for the 
universe to be approximately homogeneous, it will be correct to assume the Hubble 
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motion is dominant. It is no coincidence that the size scale at which the Hubble flow 
becomes dominant coincides with that at which the universe becomes homogeneous: 
below this scale the development of structure must have required dominant peculiar 
motions.] Check the above numbers 

The energy given by (3) is constant as the universe expands. Note that the net energy, 
E, can be negative if the gravitational potential energy exceeds the kinetic energy in 
magnitude. If E is negative then the R-sized region must have a maximum possible 
size. This is because, if we allowed R to tend to infinity then the density would 
decrease to zero, leaving only the first (kinetic energy) term in (3), which cannot be 
negative  a contradiction. In fact, from (2), it must be that 0H  at the maximum 
size, since the velocity must then be zero as the galaxies reverse direction and the 
universe begins to contract. Hence, for negative E, the maximum of R follows 
immediately from (3), i.e., 

For 0E    
E

GM
RMAX

2

~     (4) 

where M is the total mass of the R-region. The approximate nature of (4) is due to it 
being strictly invalid to replace our small test mass, m, with the mass of the whole R-
region, M. An integration to get the total gravitational potential energy is really 
required, and this would introduce a factor of 3/5 into (4), see Chapter 57.  

Although we have concluded that a maximum size is reached for a specific region, it 
is valid for any larger region if the universe is homogeneous: the universe as a whole 
will stop expanding and re-contract at some finite time if 0E .  

As the kinetic and gravitational energies become closer to cancellation, i.e., as 0E , 
the R-region becomes destined to reach an ever greater maximum size. As the 
cancellation becomes exact, and the net energy of the R-region becomes zero, its 
radius can expand to infinity (with velocities asymptotic to zero). From (3) the critical 
density at which this condition occurs is,     
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For unchanging velocities the age of the universe would be given simply by 
HvRt /1/ , so (5) gives,     
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Just as for the R-region, so for the universe as a whole: if critical  it will expand 
forever, if critical  it will stop expanding at some finite time, having reached a 
minimum density, and re-contract.  

Note that the critical density varies with the age, t, of the universe, as does the Hubble 
parameter. Note also that if gravity were weaker (i.e., if G were smaller) then the 
critical density would be larger. This is not surprising, since, if gravity were weaker, it 
would obviously require a greater density to reverse the universe s expansion. 

The value of H at the present time is 71 km/sec/Mparsec = 2.3 x 10-18 /sec., which is 
equivalent to the age of the universe being H/1 13.7 Gyrs. This value for H derives 
from the WMAP/COBE satellite observations of the microwave background and is 
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believed accurate to +/-4%. Since G = 6.67 x 10-11 m3kg-1sec-1 we get a critical 
density of      

327 kg/m10  6.9critical

    
(7) 

The mass of one hydrogen atom is 1.67 x 10-27 kg. Hence the critical density 
corresponds to just one hydrogen atom per volume 1.67 x 10-27kg/ 9.6 x 10-27m3 = 
0.17 m3, or just 5.7hydrogen atoms per cubic metre. 

In sharp contrast, the best achievable vacuum in terrestrial physics laboratories is 
around 1011 molecules per cubic metre. Hence, an average cosmic density of material 
which would constitute a record breaking vacuum by some 10 orders of magnitude on 
earth would be sufficient in its gravitational effects to eventually halt the expansion of 
the universe and cause it to contract. 

Let us summarises what we have concluded so far, 

 

If the average cosmic density exceeds a certain time-dependent critical density, 
then 0E  and the universe will stop expanding and contract instead. The 
situation is analogous to a projectile reaching the zenith of its trajectory. (This 
conclusion is not valid if dark energy exists  see Chapter 23). 

 

Conversely, a universe with an average density less than the critical density has 
0E  and is analogous to a projectile whose velocity exceeds the escape velocity: 

it will expand indefinitely.  

 

A very simple expression for the critical density has been derived, (6), in terms of 
the universal gravitational constant, G, and the age of the universe alone. At the 
present epoch (13.7 billion years), the critical density is found to be remarkably 
small, namely ~5.8 hydrogen atoms per cubic metre.  

These remarkable conclusions follow from the simple energy equation (3). It almost 
seems to be cheating to conclude so much from so little. But we have not yet 
exhausted the implications of equation (3).  

3. The Expanding Universe 

Suppose we are dealing with a fixed inventory of mass and no radiant energy. Then 

the density will be proportional to 3/1 R . On the other hand, pure radiation would 

cause the density to vary as 4/1 R . This is because, as the universe expands, the 
wavelength of each frequency component of the radiation is effectively stretched in 
proportion to the expansion of universe. So if the universe expands by a factor X, then 
the wavelength of each radiation mode also increases by the factor X. This means that 
the energy associated with each mode decreases by the factor X (because the quantum 
of energy is inversely proportional to its wavelength). Hence, the total amount of 
radiant energy decreases according to R/1 . Dividing through by the volume gives a 

radiant energy density proportional to 4/1 R . Hence, at sufficiently early times, (t) 

will increase at least as fast as 3/1 R as we move backwards towards 0t . 

Now, since the energy E given by (3) is constant it follows that the factor in the 

bracket must involve a cancellation of the leading divergent term, i.e., that in 3/1 tR 

or 4/1 tR , so as to leave this term proportional to 2/1 tR , as required to make (3) 
constant. It follows that at sufficiently early times, when 0tR , the two terms in 
the bracket must virtually cancel. This gives, 



Page 5 of 14 

For sufficiently small t: )(
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But (8) is the same as the expressions (5,6) for the critical density. So we conclude 
that for sufficiently early times the density of the universe is inevitably very close to 
the critical density, 

For 0t :   1
critical

      

(9) 

We have already concluded that the density is related to the size scale by,     
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           (10) 

where n is 3 or 4 for matter and radiation respectively. Since (8) gives H in terms of 
the density, and (10) gives the density in terms of the radius, we conclude,   
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But using (2) with dtdRv /  gives,     
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Integrating (12), and taking the size parameter to be 0RR  at some arbitrary datum 
time zero, gives     
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where A  is some constant. Consistent with (13) we could claim by fiat that the 
universe started at the finite size scale 0R  at the moment of creation, here given by 

0t . However, the derivation of (13) from (12) is just as valid for negative times, for 
which it gives 0RR . There is nothing physical to prevent this further extrapolation 
backwards, so claiming that the universe sprang into being with a finite density at 

0t  would be no better motivated than claiming that it began at any other arbitrary 
time. In the absence of any such reason it is natural to assume that that (13) applies all 

the way back to the time ARt
n

/2
0  when the density becomes singular because 

0R . Having come to this conclusion we can shift our datum zero time to this 
singularity, i.e., the Big Bang, and (13) becomes simply,     

nttR
2

     

           (14) 

This has been derived for sufficiently early times only, because (8) has been justified 
(so far) only for early times. But at sufficiently early times the density of the universe 

will be dominated by radiation rather than matter, because the former varies as 4/1 R 

and the latter only as 3/1 R , so the former will dominate as 0R . Consequently we 
are justified only in writing (14) as, 

Radiation dominance:  ttR

     

           (15) 

However (14) would hold for arbitrary times if (8) were valid for arbitrary times, in 
other words if the energy E, (3), were zero. There is a temptation to regard the total 
energy of the universe as zero since it resolves the paradox of how the universe can be 
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created ex nihilo. If the net sum of the universe s mass-energy is zero then we no 
longer have to worry about how something could spring from nothing. Instead it is 
only nothing that springs from nothing. The universe is therefore the ultimate free 
lunch, as Alan Guth (1998) has said. However, the concept of the universe s total 
mass-energy is fraught with difficulty, as explained in Chapter 57. An uncontentious 

route to concluding that 3
2

ttR  in the matter dominated era is provided in Chapter 
23 via a relativistic treatment where it is seen to apply when the spacetime curvature, 
rather than the energy, is zero. 

Let us summarise what we have learnt about the cosmic expansion from these very 
simple considerations,  

(i) The size scale, tR , shrinks to zero at t = 0, so that any finite region of the 
universe would have been a point at the Big Bang.  

(ii)The rate of the universe s expansion is divergent at t = 0, i.e., tdtdR /1/ . In 
other words, the universe expands divergently rapidly immediately after the Big 
Bang. 

In relation to (i), note that if the universe is infinite then it would have been infinite at 
0t  and the Big Bang would have taken place at all points simultaneously.  

4. The Horizon Problem 

The reader will have spotted something odd about (12), or equivalently (15): they 
imply that as 0t  or 0R the velocity dtdRv /  is divergent. But does this not 
violate the cosmic speed limit, the speed of light? You might reasonably suppose this 
to be because our treatment has been non-relativistic and that a relativistic analysis 
would respect cdtdR / . But this is not so. The general relativistic development in 
Chapter 23 also results in dtdR /  near the Big Bang. How can this be? 

In effect, the universe expands too quickly for light to keep up in the early stages. The 
resolution of the apparent conflict with the (special) relativistic requirement that 
nothing exceeds the speed of light is that dtdR / is not the velocity of any material 
substance but the expansion of space itself. From this point of view, two so-called 
comoving particles, that is particles which are simply going with the Hubble flow 

are as near to stationary as you can get in this universe. Nevertheless the distance 
between them, R , is increasing at a rate HRdrdRv / . It is ironical that this general 
relativistic conundrum would not arise if we had not had special relativity drummed 
into us so effectively, i.e., if we did not believe in a cosmic speed limit. In some ways, 
the general relativistic cosmological solutions are conceptually closer to non-
relativistic physics than special relativistic physics as a result of the existence of a 
preferred cosmic time coordinate. 

So it seems that we must accept that the universe does expand too rapidly for light to 
keep up in the early stages. The size scale is increasing as given by (15), ttR  and 

tdtdR /1/

 

whereas a pulse of light forms an expanding sphere of radius ctr . 
The former is inevitably a faster expansion at early times, whilst the latter is 
inevitably faster at later times. This is illustrated in Figure 1. The normalisation of the 
time and space axes is arbitrary. The physical region of size R , representing a portion 
of the universe, can be regarded as defined by a specified inventory of material 
particles. This is usually called the Hubble volume because we are assuming the 
matter within it is free to move with the Hubble flow. Suppose we choose the Hubble 
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volume to coincide with the light-sphere at unit time in Figure 1. For all later times 
the size of the Hubble volume is less than that of the light sphere. However if we look 
at earlier times the light sphere was smaller than the Hubble volume, R . In fact the 
ratio of the radius of the light sphere to that of the Hubble volume varies as tRr / 
and hence shrinks to zero as 0t .  

Figure 1 Illustration of the Horizon Problem 
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But a causal connection can exist only between regions within the light sphere. So this 
implies that, at early times, only a vanishingly small proportion of our Hubble volume 
was in causal contact. The whole Hubble volume would appear to break up into a 
myriad of regions which are mutually causally unconnected at early times. But in this 
case, how can the universe have become homogeneous and isotropic? It would seem 
to demand a remarkable coincidence between independent regions. The point is that 
homogeneity usually originates from a causally connected region which has 
permitted, at some time, a thermodynamic equilibrium to be established.  

A simpler way to understand this causality issue is to consider a pair of diametrically 
opposite points on the cosmic horizon. The cosmic horizon is the furthest point which 
can currently be seen (in principle) due to the limitations imposed by the finite speed 
of light and the finite age of the universe. A point on the horizon is, by definition, 
only just able to influence our cosmic locality by the present epoch. So how could 
diametrically opposite points have any effect upon each other? How can the 
equilibrium state which is suggested by the homogeneity and isotropy of the universe 
have arisen? This is the Horizon Problem.  

It is tempting to suppose that the equilibrium was established very early in the life of 
the universe, only a very short time after the Big Bang. This is indeed thought to be 
the case. But the difficulty is that it is not consistent with the picture illustrated by 
Figure 1. As a result of (15) there would be vanishingly little causal connection at 
early times. The currently dominant hypothesis to resolve this problem is inflation 
theory which is discussed in simple terms in Chapter 56.  
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5. The Flatness Problem 

In §4 we noted that it is inevitable that the ratio critical/  tends to unity at early 
times. However this does not mean that it must be close to unity at later times. 
Virtually any value of  could arise at later times and still have the limiting value 

1 as 0t  (as we shall shortly see). From the perspective of the simple theory 
employed so far, the actual value of  at the present epoch appears to be a contingent 
property of our universe which must be found from observational evidence. Specific 
cosmological theories such as inflation will constrain, or imply, the value of , but 
we shall ignore this for now in order to explain the Flatness Problem. 

Using the expression (5) for the critical density, the energy equation, (3), can be re-
arranged to give, 
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           (17) 

In the matter dominated case the total mass within region R  is the constant M . In the 
radiation dominated case this mass-energy diminishes as the region expands and we 
have put RM R / . In both cases the mass m  is merely the test mass whose 
energy, E , we are considering. Consequently if the size scale is 0R  at some arbitrary 
time 0t  we can define the constants, 

GMm

ER0

 

and  
RGM

ER2
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           (18) 

Hence (16) and (17) become, using (14),  
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Radiation Dominated Era
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Recall that 
~

 

and  are constants, so that equations (19) and (20) give the time 

variation of  explicitly. Some qualitative features follow from (19,20) immediately. 
Consistent with our previous observation, if 0E  so that 0

~
, , then  must be 

less than unity, i.e., a density less than the critical density corresponds to positive 
energy. However, (19,20) also show that in this case   decreases monotonically and 
is asymptotic to zero.  
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If 0E  so that 0
~

, , and assuming 2
3

0 /tt  (Equ.19) or 
~

/0tt  (Equ.20), 

then  must be greater than unity, i.e., a density greater than the critical density 
corresponds to negative energy. However, (19,20) also show that in this case   

increases monotonically and becomes divergent at 2
3

0 /tt  (Equ.19) or 
~

/0tt

 
(Equ.20). This is the time at which the universe reaches its maximum size and the 
critical density is instantaneously zero.  

Hence, despite the density necessarily being very close to the critical density at early 
times, it will diverge away from the critical density at later times unless the net 
energy, E , is very close to zero. For a tiny positive energy the density tends to zero as 
t  and R . For a tiny negative energy the density reaches a non-zero 
minimum after a finite time when R  reaches a finite maximum. This behaviour is 
illustrated in Figure 2. This graph assumes some arbitrary value 1  at 1 second. 
Equs.(19,20) determined the value of  thereafter. A range of starting values, 1 , 
from 0.9 to 1.1 are plotted in Figure 2. After only a few seconds  has diverged away 
from its initial value unless it starts extremely close to 1.   

Figure 2 Illustration of the Flatness Problem  

In the general relativistic interpretation, 1 corresponds to flatness of the 
spacetime. Observational evidence, from the WMAP satellite, Jarosik et al (2011), 
and other sources, indicates that  equals unity to within ~1% at the present epoch. 
In view of the above results this implies that the value of  at (say) 1 second would 
have to be equal to unity with extraordinarily high precision. Just how fine-tuned to 
unity would 1  have to be? We can work it out using (19,20).  

Take the current age of the universe to be 13.7 billion years ( nowt  = 4.3 x 1017 s). We 
shall also need the time at which the radiation era gives way to the matter dominated 
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era, since the time dependence of  is different in the two eras. The radiation era will 
be taken to end at 75,000 years ( eqt  = 2.4 x 1012 s) for the sake of this illustration. 

Suppose 99.0now and consider firstly the period eqt  to nowt . This period is matter 

dominated and (19) gives, setting nowtt0 ,   

0.0101     hence     
1

1

1
199.0

3
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Now consider the period from 1 second to eqt . This period is radiation dominated and 

(20) gives, setting eqtt0 ,  

6-6 103.18
~

     hence     ~
1

1

1
~

~
11018.31eq 

Hence,  18
126

6

103.11
1/104.21018.3

1018.3
1sec)1(

 

Thus, to produce a value now = 0.99 we require a value of  at 1 second which 
differs from unity by only ~10-18. The same is found for now = 1.01. And, of course, 
the use of 1 second as the starting time was arbitrary. Using a small fraction of a 
second as the starting time increases the required precision still further.  

It is one of the triumphs of inflation theory that it provides a mechanistic explanation 
for the extreme degree of fine tuning required to produce 1 in the present epoch 
(see Chapter 56). 

In the present simplistic development, Equs.(16,17) link 1 with an exact balance 
of the kinetic and gravitational potential energies so that the net (non-relativistic) 
energy, E , is zero. This tempts one to imagine that the universe began as a quantum 
fluctuation. Ordinarily a quantum fluctuation does not last very long. Specifically, a 
quantum fluctuation of energy E would be expected to last for a time of about E/ . 
But if the net energy is fine-tuned to be close to zero, a quantum fluctuation could 
perhaps persist. From this perspective, the flatness of the universe becomes a 
prerequisite for its longevity. Appealing though this may be, there are theoretical 
difficulties with this idea, not least that the total energy of the universe is dreadfully ill 
defined (see Chapter 57).  

However there is another issue which even an approximate equality of the potential 
and kinetic energies assists in explaining. Why were the contents of the universe 
flying away from each other at the start  why did the Big Bang have the 
characteristic of an explosion? Why is the universe expanding rather than static? A 
static universe suggests being gravitationally bound. But by the virial theorem this 
would require the kinetic energy to be half the magnitude of the potential energy (and 
the opposite sign). Zero net energy therefore indicates an excess of kinetic energy 

 

with the result being universal expansion. In this sense a Big Bang scenario seems 
inevitable if we link zero net energy to the possibility of ex nihilo creation (or flatness 
to inflation). However these thoughts are merely heuristic and should not be regarded 
as secure.  
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6. The Time-Temperature Relationship in the Early Universe  

During the first ~14 seconds or so there are still large numbers of electrons and 
positrons in the Big Bang fireball due to the very high temperatures. However, after 
~14 seconds, and whilst the universe is radiation dominated, the universe s density is 
due to photons and neutrinos. The density of the photons is that of black body radiation given 
in terms of Stefan s constant,  = 5.67 x 10-8 Wm-2K-4, by ,     

3

44
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Tphotons

    

           (21) 

where T  is the absolute temperature. In the Appendix to this Chapter the contribution 
of the neutrinos to the density are calculated and shown to equal 68% of the photon 
contribution. Hence the total density in the radiation era is,     
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           (22) 

But we know how density relates to the Hubble parameter from (5), giving,     
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           (23) 

The Hubble parameter is related to the age of the universe to a reasonable 
approximation by tH /1  at later times. However this is not accurate in the radiation 
dominated period. Here we have, from (15) that tAR

~
 for some constant A

~
. This 

gives, 
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           (24) 

Hence (23) becomes,     
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           (25) 

Substituting numerical values for the universal constants gives, 

Radiation era:   
t

T
101033.1

     

           (26) 

where temperature is in K and time in seconds, and (26) is valid for eqtts14 . So, at 

~100 seconds the temperature of the Big Bang fireball is about 1.3 billion K. The 
Appendix shows that the annihilation of the electron-positron pairs at ~14 seconds 
causes the temperature of the fireball to increase by a factor of 1.4. So (26) also 

implies that the temperature in the first 14 seconds is 
t

T
101095.0

. The temperature 

is thus ~10 billion K at 1 second.  

It still amazes me that this can be deduced with nothing in the way of observational 
data required in the calculation. Equ.(25) involves only universal constants in the 
time-temperature relation. 
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7. The Cosmic Microwave Background Temperature 

Can we push our luck and also derive an expression for the temperature of the 
universe in the matter dominated era? Well, no, not really, because once matter and 
radiation have decoupled there is no longer a unique temperature applicable to the 
whole universe. It is no longer in thermal equilibrium. The matter content is destined 
to undergo gravitational collapse and to give rise to a wide range of temperatures in 
the form of stars and gas clouds, etc. However, the radiation from the original Big 
Bang fireball has now decoupled from the matter and retains its own independent 
temperature. Over the eons its temperature has reduced as the universe has expanded. 
This is what we now detect as the cosmic microwave background (CMB). Its 
temperature has been very accurately measured, 2.725K. Can we extend our 
temperature estimate to cover the CMB? 

The temperature of the radiation in the matter dominated era will continue to reduce 

in proportion to R/1 . But in the matter era 3
2

tR , so 3
2

tTrad  for eqtt  where 

eqt  is the time when the radiation era gives way to the matter era. We shall simply 

assume that this is 75,000 years. The temperature at the end of the radiation era is 
thus, from (26),     

eq
eq

t
T

101033.1

    

           (27) 

Using 3
2

tTrad  after this period we deduce that the temperature of the CMB now 
should be,    

3
2

6
1

10
3

2
10

1033.1
1033.1

now

eq

now

eq

eq
CMB

t

t

t

t

t
T

  

           (28) 

Inserting the numerical values eqt  = 2.4 x 1012 s and nowt  = 4.3 x 1017 s provides our 

estimate of the CMB temperature of 2.70K. This is remarkably close to the measured 
2.725K given the simplicity of the estimate.  

However, we have cheated. We have smuggled the time of radiation/matter 
equality, eqt , into the calculation. To derive eqt  we must know the matter content of  

the universe, and this must include dark matter as well as ordinary (baryonic) matter. 
This can be deduced from observational evidence. However, in practice, the accuracy 
of the measurements of the CMB temperature are such that these are used to constrain 
estimates of the matter density of the universe (often expressed as the photon:baryon 
ratio). Despite the confession of having cheated, note that (28) is fairly insensitive to 

eqt  due to the power 6/1 , and eqt  can be estimated from the observed matter content 

of the universe without appeal to the CMB. For example, doubling the estimate of eqt 

only changes the calculated CMB temperature to 3.0K. So it is rather impressive that 
the very simple theory presented above can predict the CMB temperature so well 

 

after all this time! 

With the benefit of twenty-twenty hindsight it is surprising that no one set out 
deliberately to detect the CMB, leaving it instead for Penzias and Wilson (1966) to 
stumble upon serendipitously. Given the simplicity of the calculations leading to the 
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above estimate of the CMB temperature it was evident that it should be sufficiently 
intense to be detectable. The detection of the CMB at about the expected temperature 
marked the point at which cosmology, and the Big Bang hypothesis in particular, 
came of age as a science in its own right.  

Appendix - Neutrino Numerology and Electron-Positron Annihilation 

The neutrinos cease to interact significantly with the rest of the universe at about one 
second after the big bang. The neutrinos are no longer in thermal equilibrium with the 
rest of the universe after this time. This does not cause any immediate difference in 
temperature between the neutrinos and everything else, but it will do so only ~13 
seconds later. By 14 seconds the electrons and positrons have mostly annihilated, 
producing large numbers of very energetic gamma rays (photons). These gamma rays 
quickly become thermalised in the very dense conditions that prevail. In other 
words, the energy released by annihilation of the electron/positron pairs heats up the 
remaining contents of the universe  at least, those constituents which interact 
sufficiently to enable the energy transfer to take place. Thus, the temperature of the 
photons, and of the remnant electrons, protons and neutrons, are almost 
instantaneously increased. The neutrinos, however, do not partake of this free hand-
out of energy. They cannot do so because they are no longer interacting with 
anything. Hence, from ~14 seconds until the present day, the neutrino background has 
been cooler than the microwave background. But by how much? 

It is essentially book-keeping to evaluate the temperature increase of the photons due 
to electron-positron annihilation. The trick to the book-keeping exercise is to consider 
the entropy of the photon and e- / e+ radiations. The entropy of a thermalised 
(equilibrium) particle species with Ns spin states and Na distinct antiparticles is, per 
unit volume,     

32

45

2

c

Tkk
NfNS BB

sa

   

           (29) 

where f  = 1 for bosons (e.g. photons) but f  = 7/8 for fermions (e.g., electrons).  
Consequently, the leading factor  fNaNs  before the e- / e+ annihilation is,    

fNaNs = 
2

11
2

2

7
21122

8

7

  

           (30) 

where the first term accounts for the electrons and positrons, and the second term for 
the photons. After the annihilation of the electrons and positrons, this factor is just 2, 
i.e., the photons alone. Hence, if the temperature remained constant, Equ.(29) would 
imply that the entropy had decreased by a factor of 4/11. But entropy cannot decrease. 
Thus, the temperature must increase sufficiently to counteract the decrease in the 
fNaNs factor, giving,  

photon temperature increases by a factor of 401.1
4

11 3
1

  

           (31) 

Hence, the neutrino temperature today will be the photon temperature divided by 
1.401, i.e. 2.725oK / 1.401 = 1.945oK. Note that the neutrinos themselves have played 
no part in the derivation of this temperature. It has been based solely on the measured 
photon temperature, and on the numerology of the photons and electrons/positrons. 
Unfortunately the cosmic neutrino background is undetectable due to the extremely 
weak interaction cross-sections of neutrinos, especially at such low energies.  
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The energy (and hence mass) density of a blackbody field is proportional to the 
absolute temperature to the power 4. However, the factor of fNaNs in Equ.(29) also 
occurs in the energy density. In the standard theory of weak interactions, neutrinos 
occur in just one spin state, despite being spin ½. Only negative helicity neutrinos and 
positive helicity antineutrinos take part in weak processes. Whether this means that 
positive helicity neutrinos and negative helicity antineutrinos do not exist is not 
certain, but because they do not interact at all, except by gravity, we do not know of 
them. If they do exist then the neutrino density will be double what we assume here. 

Hence, for a given type of neutrino (say, the electron neutrino), fNaNs = 7/8 x 2 x 1 = 
7/4. But there are three types of neutrino, the electron neutrino, the mu neutrino, and 
the tau neutrino. Hence,  fNaNs  = 21/4 in total. Compared to the photon field (fNaNs = 
2), this factor is therefore 21/8 larger. But, each of the neutrino fields is at a 
temperature which is only (4/11)1/3 times that of the photons, from Equ.(31). Hence, 
the three neutrino fields contribute to the total energy density of the universe as 
follows, 

681.0
11

4

8

21 3
4

photons ofdensity energy 

neutrinos all ofdensity energy  
           (32) 

Consequently the total energy density of the photon and neutrino fields is 1.681 times 
that for the photons alone. 
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