
Chapter 16  The Opacity of the Stellar Medium 
Last Update: 10 September  

1. Introduction 
The opacity, , of the stellar medium can be defined as the reciprocal of the mean free 
path of a photon, divided by the total mass density. Thus,       

/1              (1.1)  

The opacity will depend upon the frequency of the photon in question. In this Chapter 
we shall be concerned only with the weighted average opacity over the spectrum of 
photon energies corresponding to a thermal equilibrium distribution at a given 
temperature (known as the Rosseland mean opacity).  

The opacity is due to the presence of particles which interact with the electromagnetic 
radiation. Most obvious of these are free charged particles, i.e. free electrons, free 
protons and ionised nuclei. We will see that the opacity due to free electrons 
(Thompson scattering) is dominant at sufficiently high temperatures, typical of the 
centres of stars (i.e. ~107 K and above). In contrast, the opacity due to free protons or 
nuclei is always negligible.   

However, at intermediate temperatures, between ~104 K and ~107 K, the dominant 
contribution to opacity comes from electrons which are bound to a nucleus. The most 
obvious contribution is due to neutral atomic hydrogen. The mechanism is photon 
absorption causing the bound electron to be emitted, i.e. photodisintegration. This can 
occur only if the photon energy exceeds the ionisation potential. If the temperature is 
too low there will be few photons of such energy, and the opacity due to this 
mechanism must reduce to zero. On the other hand, this mechanism also requires that 
some electrons are bound to protons, or nuclei, and hence be available to absorb a 
photon. If the temperature is too high there will be vanishingly few such bound 
electrons, and again the opacity due to this mechanism will reduce to zero. Hence, we 
see that this mechanism will apply only between certain lower and upper temperature 
limits. We shall see that this temperature range is roughly ~104 K to ~107 K. We shall 
also see that the opacity is density dependent in this temperature range.   

In this Chapter we shall derive approximate, closed-form, expressions for the opacity 
applicable above about 8,000 K. To do so we shall initially consider the opacity due 
to hydrogen and free electrons alone. We then compare our predictions with published 
data for stars of stellar composition. The opacity due to metals (which comprise 
~2.5% of the Sun at the present time) is not addressed. Opacity at temperatures below 
~8,000 K is also not derived, although we shall make some qualitative remarks about 
this regime in Section 11. Our hydrogen-based opacity displays the correct variation 
with temperature, and hence provides a good illustration of opacity generally. 
However, accurate calculations of opacity are a complex, specialist area which we 
cannot hope to reproduce here. In particular, accurate calculations would need to 
consider the contributions of neutral helium and metals.     



2. Relationship Between Opacity and Cross Section 
If the cross section of a particle x to absorb or deflect a photon is , and if the number 
density of x particles is x

N , then the reaction rate per photon is t/1cx
N , where t 

is the reaction time per photon. The mean free path of a photon is just  = ct, hence,      
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          (2.1)  

from the definition, (1.1). Note that the density on the LHS is the total mass density 
(of all types of particle present in the stellar medium), whereas on the RHS it is the 
number density of the particle type x in question only. The ratio of these two densities 
is found as follows:-  

Suppose that free protons, plus protons in the form of hydrogen atoms, account for a 
mass fraction X of the stellar medium. Suppose that helium nuclei and atoms make up 
the remainder, and hence have a mass fraction Y = 1  X. We will ignore the mass of 
the electrons for simplicity. We also approximate the mass of a helium nucleus, or 
atom, to that of four protons. Hence, 

 

For every X protons there are Y/4 helium nuclei/atoms; 

 

There are two electrons for each helium nucleus/atom, and one per proton, hence, 

 

For every X protons there are X + Y/2 electrons;  

Consider scattering by electrons (Thompson scattering). The particle x in (2.1) is 
therefore the electron. From the above observations, the number density of electrons 
is given in terms of the number density of protons by,      
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          (2.2)  

Similarly, the number density of helium nuclei/atoms is,      
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But the total mass density is given by,     
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          (2.4)  

since X + Y = 1. Substituting (2.2) and (2.4) into (2.1) gives, for Thompson scattering 
by electrons, or for free-free electrons transitions,      
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          (2.5)  

Consider now the bound-free transition in hydrogen, for which the particle x in (2.1) 
is a neutral hydrogen atom. Suppose that, excluding the protons bound in helium and 



metal nuclei, the fraction of protons which are in the form of neutral hydrogen atoms 
is fH. Following similar reasoning to the above, we find that the relationship between 
opacity and cross-section for the bound-free transition in hydrogen is,      

p
H M

X
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Finally, for the bound-free transition of He+ we have,      
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where fHe is the fraction of helium nuclei which have captured one electron to form 
He+.   

In the numerical evaluations which follow we shall use X = 0.71, which is 
representative of the Sun at the present time. Whilst we have derived (2.5-2.7) on the 
basis that X + Y = 1, i.e. that no metals are present in the star, the Sun has Y = 0.265 
and hence about 2.5% metals. Our numerical evaluations implicitly assume Y = 0.29 
and no metals.   

3. The Thompson Opacity 
Thompson scattering by free electrons has a cross-section,     
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          (3.1)  

(see, for example, Mandl & Shaw, Equs.1.70, 1.72). Using (2.5) the Thompson 
opacity is thus,   
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        (3.2a)  

(NB: Astronomers tend to use cm2/g as the de facto standard unit for opacity.)  

This opacity assumes that all the electrons are free (i.e. not bound in atoms). This is a 
good approximation at high temperatures (above ~107 K). As a rough approximation 
we may take the fraction of electrons which are free to be the same as the fraction of 
protons which are free, i.e. 1  fH. (This would be correct if the star were all hydrogen, 
but the proportion of helium which is ionised, 1  fHe, will differ). Thus, the 
contribution of Thompson scattering to the opacity in general is estimated from,    
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        (3.2b)  

The determination of fH is discussed below.   



4. Finding the Fraction fH of Neutral Hydrogen  The Saha Equation 
The Saha equation, which determines the fraction (y) of protons which are free at a 
given temperature and density, has been derived in Chapter 8. It is,      

kT/B

p
N

3

2
3

e
2

e
2

kTm2

y1

y

   
          (4.1)  

Recall that p
N  is the number density of all protons, whether free or in the form of 

hydrogen, but excluding those in nuclei; y is the fraction of these protons which are 
free. Hence, fH = 1  y. In (4.1), B is the ionisation energy of hydrogen, i.e. B = 13.6 
eV. For a nucleus of atomic number Z, the ionisation potential from the ground state 
s,     
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          (4.2)  

Numerical results for the fraction of neutral atomic hydrogen (fH), using X = 0.71

 

Total Density (g/cc) T (K) 
1 10-4 10-10 

104 0.99997 0.9972 0.102 
105 0.825 0.00269 2.7 x 10-9 

106 0.150 2.1 x 10-5 2.1 x 10-11 

107 0.0056 5.67 x 10-7 5.7 x 10-13 

 

Further results are shown graphically below:-   

Fraction of Protons in the form of Neutral Atomic Hydrogen Versus Temperature
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Before leaving this Section we note that, when fH is small compared with unity it is 

proportion to the density. This follows by writing (4.1) as 
y1

y2

 where  is 

inversely proportional to the density. Thus we have, 2/4y 2 . When  

 >> 1 we may therefore approximate y by 1 + 1/  and hence /1fH  which is 
therefore proportional to density, as claimed. This is the reason why Kramer s Law 
(see Section 12) has a linear density dependence.  

5. Cross-Section for Photodisintegration of an Atomic Ground State 
The derivation of this cross-section is described in Schiff, leading to Equ.(46.9), i.e. a 
differential cross-section of,      
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          (5.1)  

where:  

 

 is the frequency of the incoming photon; 

 

k is the wavenumber of the emitted electron; 

 

kx is the component of the vector k in the direction of polarisation (x-axis), i.e.,  

cossinkk x              (5.2)  

 

a is the size scale of the ground-state wavefunction, i.e.,  

cmZ
a

e

 

(Z = 1 for hydrogen)            (5.3)  

 

hK is the momentum transferred to the electron, i.e. in terms of vectors,  
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          (5.4)  

which gives,  cosk
c
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c
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2

2
2              (5.5)  

Now we shall be interested in the total cross section, for which the cos  term in (5.5) 
averages to zero (crudely). Thus, roughly we have,  
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          (5.6)  

where E  is the energy of the incident photon and Ee is the (non-relativistic) kinetic 
energy of the emitted electron. Conservation of energy requires,      

BEEe

     

          (5.7) 



 
where B is the ionisation energy, given by (4.2). Hence, for photon energies which are 
small compared with the electron rest energy (i.e. for temperatures below ~109 K) the 
first term on the RHS of (5.6) is negligible compared with the second. Even for 
photon energies which are approaching B, so that the electron energy is tending 
towards zero, the first term on the RHS of (5.6) is only ~10-4 eV. The second term 
(the electron energy) will still dominate if the photon energy exceeds B by only 
~0.01%. Hence we can safely approximate,      
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          (5.8)  

Equ.(5.8) is appropriate for the whole range of electron and photon energies of 
interest here. In particular it holds whether we are in the high energy regime for which 

BEEe , or in the low energy regime in which BEEe .   

Noting that the angular dependence of (5.2) when substituted into (5.1) and integrated 
over the whole solid angle yields a factor of 4 /3, we get a total cross-section from 
(5.1) of,      
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noting that we have used (5.8) to eliminate K. For Z = 1 (hydrogen) this can be 
written in terms of energies as,  

(all energies)  
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        (5.10)  

For the high energy regime, when the second term in { } is greater than unity and 
when BEEe , (5.10) becomes,  

(high energies) 
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and this is equivalent to Schiff s Equ.(46.11). Equ.(5.11) shows that in the high 
energy regime the cross-section, and hence the opacity, reduces with increasing 

photon energy as 2
7

E . Thus, at temperature T, the opacity reduces as 2
7

T  in this 

regime. This is known as Kramer s Law (see Section 12). It applies only so long as 
the energy is high enough for (5.11) to be a good approximation for the bound-free 
transition, and provided that the opacity does not drop below the minimum provided 
by Thompson scattering. This generally coincides with the temperature range from 
about 50,000 K and up to 106  107 K depending upon density.  

Equ.(5.10) shows that in the lower energy regime, when the { } is about unity, the 
cross-section reduces with reducing electron energy (noting that the photon energy 



must be assumed no less than B or the cross section will be zero). Combining the 
behaviours from (5.10) and (5.11), the cross section must exhibit a maximum at some 
intermediate electron energy  which we will see below corresponds to a temperature 
in the range 104 to 105 K.  

Remarkably, in the low energy regime, Equ.(5.10) shows that the cross-section is 
inversely related to the square of the fine structure constant. Thus, a weaker 
electromagnetic interaction would lead to a larger cross-section in the low energy 
regime. The reason for this is that the cross-section is related to the size scale, a, of the 
atom. A weaker electromagnetic interaction would clearly lead to a larger Bohr 
radius, as given by (5.3). The atom is therefore bigger and thus has a larger cross-
section.  

6. Proportion Of Photons With Energies Sufficient to Ionise An Atom 
In Section 5 it was implicitly assumed that the photon energy was greater than the 
ionisation potential, B. For photons of lower energy, ionisation is not possible and the 
cross-section is zero. In principle, we can obtain the effective (mean) cross-section for 
a black body distribution of photons at a given temperature by averaging, that is,      

dE]E;T[P)E(effective             (6.1)  

where P[T; E ] is the probability of a photon having energy between E  and E  + dE

 

(i.e. the black body photon density spectrum normalised by the total photon density). 
In (6.1) the cross section is zero for photon energies below B. Consequently, if the 
temperature is so low that there are very few photons with energies greater than B, the 
integrand in (6.1) is non-zero only where P is very small. Consequently the effective 
cross section is small.   

The approach taken in this Chapter is not to carry out the integral in (6.1). The reason 
is that this would not be tractable analytically. Whilst numerical evaluation would be 
simple, we wish to derive a simple closed-form expression  albeit approximate. 
Hence we shall estimate the effective cross-section by using that at a suitably chosen 
photon energy, but factoring this cross-section down if necessary to account for the 
sparsity of photons of the required energy. Thus we replace (6.1) with the 
approximation,      
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          (6.2)  

where the probability P[E >B] that a photon has an energy greater than B will also be 
denoted more compactly as P . We have already derived this probability in Chapter 6. 
The result is,     
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          (6.3)  

7. Approximate Closed-Form Expression for Hydrogen and Electron Opacity 
Putting together Equs.(2.6), (4.1,2) and (5.10) gives the overall result for the opacity 
due to hydrogen at a given temperature T,  
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          (7.2)  

and where P  is given by (6.3), above. To the hydrogen opacity, (7.1), must be added 
that due to Thompson scattering of free electrons,  
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          (7.3)  

8. Numerical Results 
In this Chapter numerical results will be derived using the following assumptions for 
the typical energies:- 
1) The average photon energy is 2.7kT. Consequently this is chosen for E  as long as 

it is greater than B. 
2) If 2.7kT < B then we put E  = B. In reality the photon energy would be slightly 

bigger, so that the electron would have non-zero energy. 
3) The electron energy is the photon energy less B. Hence, the electron energy is set 

to Ee = E

 

 B when the photon energy is sufficiently big. 
4) However, if this is less than 3kT/2, the thermal average electron energy, then this 

is used instead, i.e. if E

 

 B < 3kT/2 then Ee = 3kT/2.   

The opacity due to (7.1) plus (7.3) is,  

Figure 1: Opacity of Stellar Hydrogen Versus Temperature at Various Total Densities
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By way of comparison, the following graph reproduces (roughly) Figure G.2 from 
Stahler & Palla, which gives the total opacity for a star of solar composition:-  

Figure 2: Solar Composition Total Opacity - Taken From Stahler & Palla Fig.G.2
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The two graphs are qualitatively similar. To make the quantitative comparison clearer 
we have included below a series of graphs, one for each density, showing both our 
estimate for the hydrogen + electron opacity alone, and also the total opacity from 
Stahler & Palla:-  

Figure 3a: My Estimated Hydrogen-Only Opacity 
Compared with Stahler & Palla TOTAL Opacity: Density = 1 g/cc
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Figure 3b: My Estimated Hydrogen-Only Opacity 
Compared with Stahler & Palla TOTAL Opacity: Density = 0.01 g/cc
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Figure 3c: My Estimated Hydrogen-Only Opacity 
Compared with Stahler & Palla TOTAL Opacity: Density = 0.0001 g/cc
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Figure 3d: My Estimated Hydrogen-Only Opacity 
Compared with Stahler & Palla TOTAL Opacity: Density = 10^-6 g/cc
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Figure 3e: My Estimated Hydrogen-Only Opacity 
Compared with Stahler & Palla TOTAL Opacity: Density = 10^-8 g/cc
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Figure 3f: My Estimated Hydrogen-Only Opacity 
Compared with Stahler & Palla TOTAL Opacity: Density = 10^-10 g/cc
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In all cases the qualitative agreement is very encouraging, particularly in view of the 
quite complex, and rapid, variations with temperature and density. The quantitative 
agreement is rather disguised by the logarithmic scales, which tends to make the 
agreement look better than it is. However, note that the total opacity from Stahler & 
Palla is always greater than our estimate for hydrogen (and electrons) alone. This, of 
course, is as is should be since the opacity can only be made greater when account is 
taken of the helium and metals. In the next Section we estimate the opacity due to 
helium ions He+ in an attempt to improve the agreement.   

9. Estimate of the Opacity Due to Helium Ions He+ 

The advantage of confining attention to helium nuclei with a single captured electron, 
i.e. helium ions He+, is that the theory developed above for hydrogen can simply be 
taken over unchanged except for:- 

 

The replacement of the atomic number Z = 1 by Z = 2 (i.e. for a doubly charged 
nucleus); 

 

The replacement of the nuclear mass Mp by 4Mp; 

 

The replacement of the fraction X by the fraction Y = 1  X.  

Thus, the helium ion opacity is given by,   
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where,   y1fHe   and  kT/B
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We have written Equs.(9.1-4) in terms of an arbitrary Z though they should be 
interpreted with Z = 2 for helium. Because the ionisation potential for helium (from 
He+ to He++) is four times that for hydrogen (4 x 13.6 = 54.4 eV), we expect that it 
will affect the opacity only at high temperatures.   

Numerical evaluation of Equs.(9.1-4) shows that helium ions (He+) contribute little to 
the opacity, which appears dominated by hydrogen at all temperatures and densities. 
See EXCEL file Stellar Hydrogen plus Helium Opacity for graphs.   

It could be that neutral He contributes more to the opacity, particularly since its first 
ionisation potential is significantly smaller (24.6 eV), though still larger than that of 
hydrogen (13.6 eV).   

10. Opacity Due To Free-Free Transitions 
We have assumed that the free-free transitions contribute negligibly to the total 
opacity.   

11. Opacity Due To Metals and Other Mechanisms 
There are several other mechanisms which can contribute to the opacity, and hence 
explain the larger opacity given in Stahler & Palla. These include:-  

1) As noted above, neutral helium may contribute significantly.   

2) The bound-bound transition in hydrogen, from the n =1 state to the n =2 state, 
has an energy requirement of 10.2 eV. Because this is a smaller energy 
requirement than the bound-free transition (13.6 eV), it can contribute more to 
the opacity at low temperatures.  

3) The outer electrons in metals will generally have lower ionisation potentials 
than hydrogen. Consequently these will contribute significantly, and perhaps 
dominate, at sufficiently low temperatures. To dominate, their opacity per 
nucleus must be sufficiently large to overcome their numerical disadvantage. 
In the case of the Sun, metals comprise only ~2.5% of the stellar medium.  

4) At temperatures below ~7000 K, hydrogen can form negative ions by 
capturing a second electron. This has a very low ionisation energy and hence 
will contribute significantly to the opacity in the regions approaching the 
photosphere.   

5) Also at the lowest temperatures, approaching the photosphere, there will be an 
equilibrium concentration of molecules. Bound-bound electron transitions in 
molecules have low energy thresholds and hence will contribute significantly 
to the low temperature opacity. The behaviour of the opacity at these lowest 
temperatures is therefore extremely complex.    



12. Kramer s Law Opacity 
We have remarked above that, in a certain range, the opacity may be expected to vary 
roughly proportionally to density and proportional to temperature raised to the power 
7/2. This type of dependence is known as Kramer s Law. This behaviour is expected 

to be roughly valid for temperatures greater than that at which the opacity peaks, but 
less than that at which the Thompson scattering becomes dominant. In other words, 
for the right hand side of the opacity peak, where the opacity is reducing with 
temperature, and before it attains its minimum value.  

A fit to this form produces a coefficient of proportionality of 1.777 x 1024 when 
density is in g/cc and the opacity in cm^2/g. (We have used Z = 0.025 to derive the 
above value). The comparison between this fit and the opacity data from Stahler & 
Palla follows:-   

Thus, the Kramer s Law fit is indeed crudely representative. Incidentally, individual 
fits for bound-free and free-free transitions imply that the latter are negligible.    

Figure 2: Stahler & Palla Opacity Compared With A Kramer's Law Fit
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