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Appendix H - About The Size Of Things 
Last Update: 8 May 2007  Needs Completing  

The universe is very large. Galaxies are very large too. Stars are most often far larger 
than planets, and planets can be very big. What determines just how big these 
astronomical bodies need to be, compared with the human scale? Similarly, atoms and 
their nuclei are extremely small compared with the human scale. The order of magnitude 
of the sizes and masses of all these things follows from the values of the universal 
constants. In this Section we show how. 

§H.1 The Observable Universe 

The size of the universe is not constant, of course. The radius of the observable universe 
is just dictated by its age, uu fctR , where, as we explain in the Cosmology Tutorial 

Chapter 5C (Cosmic geometry Part 2), f ~ 3.46 in our universe at the present epoch. At 
present tu = 13.7 Byrs = 4.3 x 1017 s.  

A time scale, te, can be defined using the electron mass, i.e., s10x28.1cm/t 212
ee .  

Dirac noted that the current age of the universe, expressed in units of te, is of the same 
order as the large number defined by the reciprocal of the gravitational fine structure 
constant. Specifically, to a good approximation we have,     
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Of course, if G is constant, this relationship can only hold in the present epoch. (Dirac 
postulated that G might vary so as to ensure the above relationship holds at all times. But 
such large changes in G are easily discredited).  

The radius of the observable universe is, 

Ru ~ 4.5 x 1026 m = 4.7 x 1010 lyrs = 1.5 x 1010 parsec  (H.2) 

A convenient size scale is provided by the size of the hydrogen atom ground state, a0, 
given by,    
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Using a0 to normalise the radius of the universe, and also using (1.1), gives,    
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(using f ~ 3.46).  

The mass of the observable universe is a slightly slippery concept. The reason is the 
negative gravitational potential energy, together with the mass-energy equivalence 
principle, means that the total mass-energy of the universe is probably exactly zero. 
However, for the present purposes, we can ignore the gravitational potential energy and 
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consider only the positive contributions to the mass-energy. Since mass is dominant in 
the present epoch, this amounts to the integral of the mass density over the whole 
observable universe. Knowing the volume, from (H.2), we therefore only need the 
average density. As discussed in Chapters 1, 2B and 5B,C of the Cosmology Tutorial, the 
mean matter density is within 1% of the critical density,     
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This excludes only the (negative) gravitational potential energy. Both dark matter and 
dark energy are included in the estimate of (H.5). In fact, they account for 96% of it.  

Hence the mass of the observable universe is,     
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As we have discussed Chapters 5B,C of the Cosmology Tutorial, only ~4% of the mass 
of the universe is believed to consist of ordinary (baryonic) matter. Hence, the mass of 
ordinary matter in the observable universe is roughly,     
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The total mass can be normalised by the proton mass and expressed in terms of the 
dimensionless universal constants as,     
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§H.2 Superclusters of Galaxies 

I need to add this in. Do supercluster sizes follow simply from Q? Are they just one 
angular degree in size?  

§H.3 Galaxies 

Why are galaxies typically of the order of 100kps in size, rather than, say, 1kps or 
10,000kps? Why do they typically contain 1012 stars, rather than, say, a mere million or 
1018? In this Section we present a rationalisation of the size of galaxies due to Rees and 
Ostriker (197?), and Silk (1976), and others. However, the reader should be warned that 
this is not established theory. The formation of galaxies presents many challenges and is 
not a mature subject.  

The argument considers the formation of a galaxy by the gravitational collapse of a gas 
cloud, initially occupying a much larger space. One should not suppose that, like a stone 
falling to earth, gravitational collapse of a gas cloud can occur unimpeded. The planets of 
our solar system are orbiting the sun quite happily without the whole system showing any 
immediate signs of collapsing. A comet, perhaps visiting our sun for the first time, will 
accelerate towards it. But in general, it will not crash into it1 (has there ever been such an 

                                                

 

1 The crashing of comet Hale-Bopp into Jupiter on the ?? of ?? 20?? was notable for its rarity. Such an 
event has not previously been witnessed by humans  or, at least, not recorded. 
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event?). Rather, with its newly gained energy, it will whip around the sun and shoot away 
back into distant space, possibly never to visit us again. Similarly, if a cloud of gas 
particles were to initiate a collapse, they would start to move faster. In other words, they 
would become hotter.  

This is simply a consequence of the conservation of energy. Recall that gravitational 
potential energy is negative. As the cloud contracts, the gravitational potential energy 
becomes larger in magnitude  but negative. In other words, the collapse causes energy to 
be released, and this can only appear (initially) as increased kinetic energy of the gas 
particles. The effect of this speeding up is to counter the collapse. One way of 
understanding this is by analogy with the example of the comet, above. Each particle of 
gas can behave in the same manner. Having gained additional kinetic energy by 
undergoing a small amount of contraction, the particle has enough energy to go back 
where it came from! Another way of understanding it is in terms of the gas pressure. The 
reduced volume due to contraction, coupled with the increased temperature, causes the 
gas pressure to rise. Assuming that the pressure was previously such that the gas cloud 
was in equilibrium against gravity, it can be shown that the increased pressure must now 
be in excess of what is required for equilibrium. So we again conclude that the gas cloud 
gets pushed back whence it came.  

The moral of this story is one of the most important facts in astronomy: gravitational 
collapse cannot happen unless energy is removed from the collapsing material. So long as 
the gas cloud retains its increased kinetic energy, it will frustrate the collapse process. 
Since this kinetic energy constitutes heat, removing it means there must be a cooling 
mechanism. The major problem in understanding both galaxy and star formation lies in 
elucidating what mechanisms provide this essential cooling.  

Providing that some cooling mechanism exists, it does not matter crucially how rapid this 
cooling is. If the cooling is slow, then the collapse will be slow, that s all. But the rapidity 
of the cooling can effect the type of collapse which occurs. If the cooling is slow and 
sedate, then the collapsing gas cloud will tend to retain its homogeneity as it collapses. 
On the other hand, if the cooling is sufficiently rapid, the collapse may become non-
uniform and lead to fragmentation of the cloud into separate clouds, each one of which 
then proceeds to collapse towards its own centre. The time scale which discriminates 
between a slow or a fast cooling rate is the natural free-fall timescale of the cloud. 

We imagine a homogeneous sphere of particles, initially at rest, which then proceed to 
accelerate towards their centre of mass under gravity. In this idealisation, the increasing 
velocity of the particles is contrived so as not to inhibit collapse, because it merely 
hastens the impending crunch at the centre. This problem in mechanics is easily solved to 
give the time for the crunch to occur, i.e., the free-fall time,       
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where 0 is the density of the gas prior to collapse.  

Having determined tff as the time which discriminates between a fast and a slow cooling 
rate  what is the cooling rate? The assumption of Rees and Ostriker (197?), and Silk 
(1976), is that the dominant physical process causing cooling will be Bremsstrahlung. 



Appendix H- About The Size Of Things  

Page 4 of 15 

This is the emission of gamma radiation due to free electrons being deflected by nuclei 
(which, in the primordial universe, means almost entirely hydrogen and helium nuclei). 
The cross section for Bremsstrahlung is derived in standard quantum field theory texts. It 
can be written as a product of the electron-nucleus elastic scattering cross-section (the 
famous Rutherford scattering formula) and a factor which accounts for the probability of 
gamma ray emission. In the non-relativistic limit, the Rutherford differential cross-
section is,     
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where 2/mvE 2
e  is the non-relativistic electron kinetic energy, and v the electron 

velocity. [See, for example, Mandl and Shaw (1993), Equ.(8.95)]. Note that the total 
cross-section is not defined, since integration of Equ.(2.2) diverges near the forward 
direction.  

In the case of soft Bremsstrahlung, in which the gamma energies are small compared 
with Ee, and for non-relativistic electrons, Bjorken & Drell (1964), Equ.(7.64), gives an 
approximate expression for the factor which accounts for the probability that the electron-
nucleus collision will emit a gamma ray. As would be expected, this is proportional to the 
fine structure constant, , but also depends upon the electrons velocity, v,     
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where minmax E,E are the maximum and minimum gamma ray energies. If a minimum 

gamma energy of zero were inserted in this expression it would be divergent. This is the 
well known infrared catastrophe , which we will not discuss further but for which see 
Mandl and Shaw (1993) or Bjorken & Drell (1964). Fortunately, this divergent term will 
cancel in our treatment. 

The product of (2.2) and (2.3) provides the Bremsstrahlung cross-section in the non-
relativistic limit. Restricting attention to hydrogen we have,    
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Although the total cross-section is not strictly defined, we can integrate Equ.(2.2) up to 
some small angle, min , to provide an effective cross-section for our purposes. Thus,   
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Due to the logarithmic dependence of (2.3), we may choose an extremely small 

min without incurring too large a penalty on the size of . Thus, we have an effective 
cross-section, 
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This is the cross-section for hydrogen to produce Bremsstrahlung when subject to a flux 
of electrons. (We have taken the usual liberties with the units which we ll fix later). The 
electron flux can be expressed as the product of the free electron number density and 
their typical velocity, vN

e . (Strictly there should be an integration over the thermal 

distribution of electron velocities). Thus, the total number of Bremsstrahlung photons 
emitted per hydrogen atom per second is,  
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We want to find the cooling rate. This is the rate of loss of energy. Consequently we need 
to know the average energy of the emitted photons. The quantum field theoretic 
expressions derived in Mandl and Shaw (1993) or Bjorken & Drell (1964) show that the 
Bremsstrahlung photon spectrum is proportional to E/1 . It follows that the average 

photon energy is given by,    
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(2.6) 

Thus, to find the total energy emitted per second as photons, we need to multiply (2.5) by 
(2.6), and we find that the divergent logarithmic term cancels. Thus, 

Bremsstrahlung Power = 
e
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where we have replaced the minimum photon energy with zero, and the maximum photon 
energy with the electron s kinetic energy.  

The cooling timescale, , may be defined as the time which is required for all the 
electron s kinetic energy to be lost by Bremsstrahlung. Hence, we can equate the 
Bremsstrahlung power with Ee/ . This gives,     
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Inserting factors of c and to get the dimensions right gives,     
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Choosing min to be 0.01o, 0.1o, 1o or 5o gives 235, 177, 119 and 79 respectively. 
Actually, the lowest energy photons will be correlated with the lowest scattering angles, 
so we should not be concerned about including very small angle. Hence, choosing 

min around 1o suggests that the effective value of 2/3 is ~0.04.  

Finally, we can express the typical electron velocity in terms of the temperature, i.e., 

2mc

kT3

c

v

      

(2.9) 

which gives,     
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This can also be written as,     
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Before proceeding with our object of rationalising the size of galaxies, it is of interest to 
evaluate this cooling timescale for representative gas cloud conditions. Stahler & Palla 
(2004), Table 2.2, give some typical conditions of giant galactic gas clouds. We shall 
ignore the neutral gas clouds, since these do not have free electrons to cause 
Bremsstrahlung. Stahler & Palla distinguish warm and hot ionised gas clouds as 
having the following conditions:- 

Gas Cloud N  (m-3) T (K) 

Ionised, Warm 0.3 x 106 8,000 

Ionised, Hot 3 x 103 500,000 

 

We assume a high level of ionisation, so that the electron density is essentially the same 
as the hydrogen density. We find using Equ.(2.10b) that the Bremsstrahlung cooling 
timescale for these conditions is ~0.5 Myrs and ~400 Myrs respectively. These seem to 
be sensible timescales for stellar (or galactic) evolution.  

We can also consider the cooling timescale associated with the universal conditions 
which prevail immediately after the freeze-out of hydrogen recombination at ~460,000 
years. The temperature is then 2574 K, and the hydrogen number density is 1.8 x 108 m-3. 
We have shown in Chapter 9b of the Tutorial that the remnant free electron density after 
freeze-out is ~7 x 10-5 times the hydrogen density, i.e. ~1.3 x 104 m-3. Thus, the cooling 
timescale turns out to be ~6 Myrs. Since this is a long time compared with the doubling-
time for universal expansion at this epoch (i.e. ~0.5 Myrs), we can conclude that 
gravitational collapse cannot happen so early in the universe s life.  

We now return to our estimate of the galactic size scale. The argument is that the 
gravitational collapse will avoid fragmenting into smaller clouds only if the cooling 



Appendix H- About The Size Of Things  

Page 7 of 15 

timescale is longer than the free-fall timescale. But a galaxy, being a collection of stars, 
must have formed in a manner which permitted fragmentation, since this fragmentation is 
the process which leads to the formation of the individual stars. Using Equs.(2.1) and 
(2.10b), the required fragmentation can occur only if the cooling timescale falls below the 
free-fall timescale, 
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But the temperature can be estimated from the loss of gravitational potential, as,     
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Where M is the mass of the whole gas cloud, of current radius R, and MP is the proton 
mass. The latter is relevant, rather than the mass of the electron, because, being so much 
heavier, it accounts for almost all the gravitational potential energy. (The protons 
subsequently share their larger kinetic energy with the electrons by collisions, i.e. they 
come into thermal equilibrium).  

In Equ.(2.11),  is the mass density, whereas N
e is the electron number density. So long 

as the ionisation fraction is high, we can therefore put, approximately, N
epM . 

Substitution of this and (2.12) into (2.11) followed by a little algebraic simplification, 
leads to the condition for fragmentation being,    
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Thus, the prediction is that, until a gas cloud gets within a size of radius ~135 kpc, it 
cannot start to fragment. When it does start to fragment, the overall size of the region 
occupied by the material will cease to shrink, since the collapse will now occur 
preferentially within the myriad of fragments  each collapsing towards their own local 
centres.  

This is a reasonable estimate of the observed size of galaxies. Our own Galaxy has  

R ~ 20 kpc. Radio galaxies tend to be larger, e.g. Cygnus A has R ~ 100 kpc. Giant radio 
galaxies, such as DA240 and 3C236, can have radii of order 1,000 kpc. Our own Galaxy 
lives within a cluster, or Local Group, with a radius of several hundred kpc. Typical 
galaxy clusters, if there is such a thing as typical , have radii of about 1,500 kpc. The 
Virgo cluster has a radius of ~ 6,000 kpc. The largest identified structures in the universe 
are the superclusters, i.e. clusters of clusters of galaxies, and have sizes of the order of 50 
Mpc or so. Consequently, there is rather an overlap of size scales between galaxies and 
clusters of galaxies, though the superclusters are on a larger scale altogether. However, 
Equ.(2.13) at least serves as a crude rationalisation of the order of magnitude of the size 
of galaxies  or perhaps the smaller clusters of galaxies. 

Rees and Ostriker (197?), and Silk (1976), and others have gone on to argue that the 
assumption that Bremsstrahlung dominates the cooling is correct only when the typical 
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thermal energy exceeds one Rydberg, i.e. when eV6.13cm2.0kT 2
e

2 , i.e. for 

temperatures higher than about 105 K. (Hence applicable to the hot interstellar gas 
clouds, but not the warm ones, see above). Hence, imposing the condition,     
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and inserting R from (2.13) gives a minimum galactic mass of,    
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As a lower bound to the mass of galaxies this is not too bad. Typical galaxies contain 
around 1011 stars and have masses of about M1012 , most of which is dark matter. [NB: 

Carr & Rees (1979) derived the same algebraic expression as our Equ.(2.15) but appear 
to evaluate it incorrectly, their Equ.(44) stating that the lower mass limit is M1012 ].  

§H.4 Stars 

A cloud of galactic gas undergoing gravitational collapse does not necessarily form a star. 
To do so it must be massive enough so that the temperatures and pressures reached at its 
centre are sufficient to ignite nuclear fusion reactions. This is what makes a star a star. On 
the other hand, if the gas cloud is vastly bigger, we have seen in Section 2 that it might be 
large enough to form a galaxy rather than a single star. So there must be an upper bound 
to the mass of a single star. This is determined by the radiation pressure, which tends to 
blow the star apart. For smaller stars, gravity ensures that the star is stable. For larger 
stars, the radiation pressure becomes more significant and ultimately cannot be stabilised 
by gravity. We will show in Chapter ? that the lower and upper bounds to a star s mass 
arising from the requirement that nuclear fusion occurs in a stable system can be written,  
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These lower and upper bounds are:- 

    9 x 1055 Mp = 1.4 x 1029 kg = 0.07M  and 5 x 1058 Mp = 8 x 1031 kg = 40M

 

(3.2) 

A typical star therefore contains about 572
3

G 10~  nucleons, and no stable star differs 

from this by a factor of more than ~40 either way. Thus, stars come in only a rather 
narrow range of masses. 

The radius of a star is not uniquely defined by its mass, since, towards the end of its life a 
star may expand greatly to become red giant, and later on a dwarf star of some sort. 
However, confining attention to the main sequence, when the star is stably burning its 
inventory of hydrogen, its density will lie in the range, 
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Unfortunately, this covers an enormous range, from 4 kg/m3 to ~1011 kg/m3. The latter 
applies only at the centre of the most massive stars. For many stars, an average density 
typical of terrestrial solids provides a rough approximation. Since the typical atomic size 
is ~a0, this density is,      
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So, a typical star with 572
3

G 10~ nucleons has a size of roughly,      
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§H.5 Planets and Asteroids 

A planet is essentially an accumulation of material which is not large enough to be a star,  
in other words, not large enough to ignite nuclear fusion. The largest planets tend to be 
composed of gas. Smaller planets tend to be solid. The smallest planets would have 
difficulty retaining an atmosphere due to their low gravity, and for this reason the smaller 
planets will tend to be solid. (Is this correct? They could retain their gas if they were cool 
enough. Why can t giant planets be solid?). The gaseous planets will naturally be 
spherical, or, more exactly, slightly oblate ellipsoids, since this is the shape dictated by 
gravity. What about solid planets? This provides the distinction between planets and 
asteroids. Planets are (virtually) spherical, whereas asteroids can take irregular, potato 
shapes. The distinction is actually a matter of size, since an irregular shape is 
insupportable in a large enough mass. Gravity will crush and distort even a solid into a 
spherical shape, leaving aside those minor perturbations known as mountains. The 
question, then, is how high can a mountain be before it is crushed by gravity? If the 
maximum mountain height is a substantial fraction of the body s dimensions, then we 
have an asteroid rather than a planet. To address this question requires a knowledge of the 
strength of solids. Can the strength of solids be deduced in terms of the universal 
constants? Well,yes and no. 

Initially, assume the compressive strength of the rock comprising the planet is known, 
call it u. Imagine for simplicity a mountain of rectangular section and of height h. The 
compressive stress at its base is simply gh , where  is the density of the rock and g 
is the acceleration due to gravity on this planet or asteroid. The latter can be written in 
terms of the radius of the planet, R, as 3/GR4g . So, the condition that the mountain 
avoids being crushed down to a smaller height by gravity is,     
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In the case of earth, for which g = 9.81m/s2, using an ultimate compressive strength of 

u 1000 MPa = 109 N/m2, and the density of iron (7800 kg/m3), gives a limiting 

mountain height of 13,000 m. Mount Everest, at roughly 9,000m, complies with this 
limit. It appears that the maximum supportable height is not dramatically higher  though 
the density we have used is probably too large, and the volume would be a factor of 2 or 
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3 smaller since mountains are not rectangular blocks. On the other hand, our assumed 
compressive strength is rather generous. 

A working definition of an asteroid might be that it can support a mountain whose height 
is 10% of the planets radius. Equ.(4.1) then yields the upper limit to the size of an 
asteroid, or, equivalently, the lower limit to the size of a planet, namely,     
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(4.2) 

Hence, again using u 1000 MPa = 109 N/m2, and the density of iron (7800 kg/m3) 

gives the dividing line between planets and asteroids to be a radius of ~800 km. This 
compares with the radius of Pluto (2,300 km) and the radius of the largest asteroid, Ceres, 
which is 465 km. Hence, these do indeed conform to our working definition2.  

To express (4.2) in terms of the universal constants alone, we need to find expressions for 
the typical density of solids and their strength. The former is easy. The mass scale of 
atoms is set by the proton mass, Mp, and the size scale is set by the ground state size of 
hydrogen, a0, given by Equ.(1.3). Hence, the density of solids is expected to of order,    
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[NB: The mean density of planet earth is 5511 kg/m3]. Equ.(4.3) involves universal 
constants alone. To attempt to express the strength of solids in a similar manner is rather 
more challenging. The energy scale is set by the electron binding energy, again taking 
hydrogen as an exemplar, i.e., the energy scale is the Rydberg, 
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Actually, the energy levels of a single electron orbiting a nucleus with charge Z are given 
by 22

e
22

n n2/cmZE , where n is the principal quantum number. However, for the 

outermost electron, the other electrons which lie between it and the nucleus will shield it 
from all but the one excess charge. Hence, for the outermost electron in an atom we can 
crudely approximate the binding energy by replacing Z by 1, giving 22

e
2

n n2/cmE . 

The elements of most interest, comprising our planetary rocks and metals, will have 
outermost orbitals with n of 3 and 4, including aluminium, silicon, calcium, iron and 
nickel, for example. Thus, we shall assume n = 4 for our energy scale, giving a 
refinement to Equ.(4.4a) as follows, 
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Inter-atomic forces act over a distance comparable with their size. Atoms do not differ 
greatly in size, the heavier atoms being of similar size to the lighter atoms. This is by 
virtue of the inner electrons being held closer to the nucleus by the larger charge of the 

                                                

 

2 Unfortunately, the recent ruling of ???? does not agree. They seem determined to downgrade Pluto to a 
planetessimal.  
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heavier nuclei. Hence, the size scale of all atoms is roughly that of the hydrogen atom, a0. 
There is, however, a slight effect of mass, and so we shall assume a size scale of ~2a0 for 
the solid elements of interest, e.g. iron. 

A typical force scale obtains when the energy scale of Equ.(4.4b) is divided by the size 
scale, 2a0, giving, 
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Dividing through by the atomic cross-section, of order 2202
0 m10~a4 gives a quantity 

with the dimensions of stress, 
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This is the stress required to displace an atom a distance equal to its radius  so the strain 
is of order unity. Consequently, this stress is a rough estimate of the expected magnitude 
of the elastic modulus of the material (Young s modulus). In fact, it is quite a good 
estimate, structural steels having a Young s modulus at room temperature of ~2 x 105 

MPa, with most other solids being rather less stiff.  

However, the manner in which Equ.(4.6) was derived suggests that it could equally be 
interpreted as the strength of the material. In truth, the strength of solids is far less than 
their elastic modulus, typically by a factor of between 100 and 1000, and possibly even 
greater. Thus, the strongest steels have ultimate tensile strengths (UTS) of ~1000 MPa, 
and less than half this for most structural steels. Rocks, of course, will be substantially 
weaker. The reasons for the shortfalls in the strengths of solids, compared with this 
simplistic theoretical strength, are well known. It is due to the inherent flaws in solid 
materials: dislocations, inclusions, grain boundaries, microcracks, multiple phases, etc. In 
particular, the movement of dislocations in ductile metals typically occurs when applied 
strains reach ~10-3, and hence at stresses which are around 10-3 of the elastic modulus, 
thus defining the yield strength. In principle it is possible to determine the strength of a 
solid material from first principles in terms of the universal constants. In practice, the 
complexities of real, anisotropic, inhomogeneous, multi-grained, multi-phase, impurity 
bearing materials full of dislocations, disclinations, inclusions, vacancies and cavities 
makes this exercise impracticable. Nevertheless, a factor of ~100 to ~1000 reduction in 
the theoretical strength is easily rationalised as a rough estimate. Shouldn t I include it 
then? We shall refer to this factor as Xfract. Thus we have, 

MPa1010m/N1010~
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~Strength 32298
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fract

 

(4.7) 

Substituting (4.7) and (4.3) into (4.2) thus allows us to express the lower limit to the 
planetary size in terms of the universal constants (permitting ourselves the fiddle-factor 
Xfract),    
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(4.8) 



Appendix H- About The Size Of Things  

Page 12 of 15 

Using Xfract approaching 1000 reproduces the dividing line between planets and asteroids 
derived above, i.e., a radius of ~800 km. Equ.(4.8) can be written in terms of the 
dimensionless gravitational fine structure constant, G . When normalised by a0 this 

gives,    
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(4.9) 

where we have used Xfract = 1000 in the last expression. 

The demarcation between planets and asteroids can also be expressed in terms of mass, 
using the density given by Equ.(4.3). We find,  
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(4.10) 

where we have again used Xfract = 1000 in the last expression. The smallest planets 
(largest asteroids) therefore have a mass of around 5 x 1021 kg. (The earth s mass is about 
1000 times this, being about 10 times the linear dimension).  

§H.6 Land-Based Life Forms 

Fortunately, for this exercise, we do not need to resolve what constitutes life . We are 
only concerned with the limitations imposed by mechanical strength or mechanical 
processes. There is a widespread fallacy that the maximum size of land animals is 
determined by their static strength: if an elephant were much bigger, its legs would snap. 
In a sense this is approximately true, but it does not refer to static strength. We have 
already seen that the limit on static strength is what defines the maximum height of 
mountains, which is of the order of 104 metres on earth. Why should an elephant not be 
far larger, then? The distinction between mountains and animals is that mountains do not 
generally move around. Energetic motion is far more demanding on the strength of an 
animal than mere static support against gravity, as anyone who has broken a bone playing 
sport will testify. In particular, the sudden arrest of rapid motion, such as in a collision, is 
probably the most structurally demanding event. Such impacts have the capacity to 
induce transient stresses which are far greater in magnitude than those due simply to self 
weight. Animals are poorly designed in the sense that they have the capacity, under their 
own musculature alone, to reach running speeds such that a collision with a solid object 
like a large rock will do them a great deal of harm. However, as a rule of thumb, we 
would expect an animal to be able to sustain a standing fall without sustaining damage. 
This is the criterion we shall use to define the upper bound size of land based life forms. 

Approximating the animal to a cube of side h, in true physicist s fashion, its gravitational 
potential energy is 0.5mgh. If the fracture energy per unit area is Gfract, the animal can 
sustain a fall without breaking so long as 0.5mgh < h2Gfract. Thus, the maximum height of 
a reasonably robust animal is,      

g

G2
h fractmax

    

(5.1) 
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where  is the density of the animal. Using 1000 kg/m3 and a fracture energy of 16,000 
J/m2 gives hmax = 1.8 metres. Given that larger animals like horses and elephants are in 
danager when they fall, this is a pretty good estimate.  

The value assume for the fracture energy requires some discussion. Using the energy 
scale defined by Equ.(4.4b), and dividing by the area scale given by 2

0a2 , we get an 

energy per unit area of, 
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(5.2a) 

Engineers use a quantity called the toughness , which is roughly fractYG , where Y is 

the material s Young s modulus. Using Y ~ 105 MPa together with Gfract ~ 12 J/m2, gives 
a toughness of ~1 MPa m. This is a good estimate for the toughness of the most brittle 
materials, such as ceramics. However, ductile materials have far higher toughnesses. 
Ductile steels have toughnesses in excess of 100 MPa m, so that their fracture energy is 
around 10,000 times that derived from Equ.(5.2).  

The reason why ductile materials have much larger toughness than the simplistic 
theoretical estimate implies is essentially the same as the reason why their tensile strength 
is so much lower (as we saw in Section 4). The tensile strength is lowered because large 
deformations are possible at much smaller stresses than implied by elastic behaviour, due 
to mediation by dislocations. The same phenomenon, allowing large deformations to 
occur, results in large amounts of absorbed energy prior to fracture. Thus, the same 
factor, Xfract, which we used to reduce the tensile strength of the material may now also 
be used to increase its fracture energy. This is, of course, an extreme simplification (no 
complaints from material scientists, please!). We approximate the fracture energy as, 
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using Xfract ~ 1000, as before. Hence we now get an estimate of fracture strength which 
reproduces a reasonable maximum animal size on earth, i.e. around a couple of metres.  

Hence, using Equ.(5.1) and substituting for the fracture energy from (5.2b), the density 
from Equ.(4.3) and also 3/GR4g , gives,     
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(5.3a) 

If we also substitute the minimum planetary mass from Equ.(4.8), and use Xfract = 1000, 
we get,    
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Thus, for the minimum planetary size (~800 km radius), the maximum land animal size is 
predicted to be ~4 metres.  

The maximum animal size is simply converted to a maximum animal mass using the 
density, Equ.(4.3), giving,   
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(5.4) 

which is ~170 tonnes. We can expect our 4 metre high animal on our very low gravity 
small planet to be very heavy. However, the mass will have been over-estimated by virtue 
of the animal being assumed to be cube-shaped. Realistic volumes for a given height 
might be only a few percent of this. Nevertheless, we expect the answer to be of the order 
of a few tonnes or tens of tons.  

§H.7 Fluid-Floating Life Forms (Oceans, Gas Planets) 

Also covers life forms which might swim in gas giant planets. To be added.  

§H.8 Molecular Basis of Life 

i.e. proteins, DNA, etc. To be added  

§H.9 Atoms 

To be added  

§H.10 Atomic Nuclei 

To be added  

§H.11 Various Black Holes 

To be added  

§H.11.1 Stellar Black Holes 

To be added  

§H.11.2 Galactic Black Holes 

To be added  

§H.11.3 Exploding Black Holes 

To be added 
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Table 1: Size and Mass of Things Normalised by a0 and Mp 
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Numerical values use: f =5; Xfract = 1000    Need to change to f = 3.46 
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