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The universeisvery large. Galaxies are very large too. Stars are most often far larger
than planets, and planets can be very big. What determines just how big these
astronomical bodies need to be, compared with the human scale? Similarly, atoms and
their nuclei are extremely small compared with the human scale. The order of magnitude
of the sizes and masses of al these things follows from the values of the universal
constants. In this Section we show how.

8H.1 The Observable Univer se

The size of the universe is not constant, of course. The radius of the observable universe
isjust dictated by itsage, R, = fct,, , where, as we explain in the Cosmology Tutorial
Chapter 5C (Cosmic geometry Part 2), f ~ 3.46 in our universe at the present epoch. At
present t, = 13.7 Byrs= 4.3x 10"’ s.

A time scale, te, can be defined using the electron mass, i.e., t, =/ m_c® = 1.28x10*'s.

Dirac noted that the current age of the universe, expressed in units of te, is of the same
order asthe large number defined by the reciprocal of the gravitationa ‘fine structure’
constant. Specifically, to agood approximation we have,

b 2 L 34x10® (H.2)

Of coursg, if G is constant, this relationship can only hold in the present epoch. (Dirac
postulated that G might vary so as to ensure the above relationship holds at all times. But
such large changesin G are easily discredited).

The radius of the observable universeis,
Ry ~4.5x10®°m=4.7 x 10" lyrs = 1.5 x 10" parsec (H.2)

A convenient size scaleis provided by the ‘size’ of the hydrogen atom ground state, ao,
given by,

1 n _c

a, = =2 =0.53x10""m (H.3)
a mc o

Using & to normalise the radius of the universe, and also using (1.1), gives,
Rl _of % _10.% _pg5x10% (H.4)
EN te ag oG

(using f ~ 3.46).

The mass of the observable universeis adightly slippery concept. The reason isthe
negative gravitational potential energy, together with the mass-energy equivalence
principle, means that the total mass-energy of the universeis probably exactly zero.
However, for the present purposes, we can ignore the gravitational potential energy and
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consider only the positive contributions to the mass-energy. Since mass is dominant in
the present epoch, this amounts to the integral of the mass density over the whole
observable universe. Knowing the volume, from (H.2), we therefore only need the
average density. Asdiscussed in Chapters 1, 2B and 5B,C of the Cosmology Tutorial, the
mean matter density iswithin 1% of the critical density,

Poit = =9.6x10 “kg/m® (H.5)

8nGt>
This excludes only the (negative) gravitational potential energy. Both dark matter and
dark energy are included in the estimate of (H.5). In fact, they account for 96% of it.

Hence the mass of the observable universeis,
M, ~4x10*kg (H.6)

Aswe have discussed Chapters 5B,C of the Cosmology Tutorial, only ~4% of the mass
of the universeis believed to consist of ordinary (baryonic) matter. Hence, the mass of
ordinary matter in the observable universe is roughly,

M baryonic 1 5,103k H.7
u g

The total mass can be normalised by the proton mass and expressed in terms of the
dimensionless universal constants as,

M
My _ f?{—p]iz:leosl (1.8)
Mo Me )ag

8H.2 Super clusters of Galaxies

| need to add thisin. Do supercluster sizes follow simply from Q? Are they just one
angular degreein size?

8H.3 Galaxies

Why are galaxiestypically of the order of 100kpsin size, rather than, say, 1kps or
10,000kps? Why do they typically contain 10 stars, rather than, say, amere million or
102 In this Section we present arationalisation of the size of galaxies due to Rees and
Ostriker (1977), and Silk (1976), and others. However, the reader should be warned that
thisis not established theory. The formation of galaxies presents many challengesand is
not a mature subject.

The argument considers the formation of a galaxy by the gravitational collapse of agas
cloud, initially occupying amuch larger space. One should not suppose that, like a stone
falling to earth, gravitational collapse of a gas cloud can occur unimpeded. The planets of
our solar system are orbiting the sun quite happily without the whole system showing any
immediate signs of collapsing. A comet, perhaps visiting our sun for the first time, will
accel erate towardsit. But in general, it will not crash into it* (has there ever been such an

! The crashing of comet Hale-Bopp into Jupiter on the ?? of ?? 20?? was notable for its rarity. Such an
event has not previously been witnessed by humans— or, at least, not recorded.
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event?). Rather, with its newly gained energy, it will whip around the sun and shoot away
back into distant space, possibly never to visit us again. Similarly, if acloud of gas
particles were to initiate a collapse, they would start to move faster. In other words, they
would become hotter.

Thisis simply a consequence of the conservation of energy. Recall that gravitational
potential energy is negative. Asthe cloud contracts, the gravitational potential energy
becomes larger in magnitude — but negative. In other words, the collapse causes energy to
be released, and this can only appear (initially) asincreased kinetic energy of the gas
particles. The effect of this speeding up is to counter the collapse. One way of
understanding thisis by analogy with the example of the comet, above. Each particle of
gas can behave in the same manner. Having gained additional kinetic energy by
undergoing asmall amount of contraction, the particle has enough energy...to go back
where it came from! Another way of understanding it isin terms of the gas pressure. The
reduced volume due to contraction, coupled with the increased temperature, causes the
gas pressure to rise. Assuming that the pressure was previously such that the gas cloud
was in equilibrium against gravity, it can be shown that the increased pressure must now
be in excess of what is required for equilibrium. So we again conclude that the gas cloud
gets pushed back whence it came.

The moral of this story is one of the most important facts in astronomy: gravitational
collapse cannot happen unless energy is removed from the collapsing material. So long as
the gas cloud retains its increased kinetic energy, it will frustrate the collapse process.
Since this kinetic energy constitutes heat, removing it means there must be a cooling
mechanism. The magjor problem in understanding both galaxy and star formation liesin
elucidating what mechanisms provide this essential cooling.

Providing that some cooling mechanism exists, it does not matter crucially how rapid this
cooling is. If the cooling is slow, then the collapse will be slow, that’s all. But the rapidity
of the cooling can effect the type of collapse which occurs. If the cooling is slow and
sedate, then the collapsing gas cloud will tend to retain its homogeneity asit collapses.
On the other hand, if the cooling is sufficiently rapid, the collapse may become non-
uniform and lead to fragmentation of the cloud into separate clouds, each one of which
then proceeds to collapse towards its own centre. The time scale which discriminates
between a ‘sow’ or a ‘fast’ cooling rate is the natural free-fall timescale of the cloud.

We imagine a homogeneous sphere of particles, initialy at rest, which then proceed to
accelerate towards their centre of mass under gravity. In thisidealisation, the increasing
velocity of the particlesis contrived so as not to inhibit collapse, because it merely
hastens the impending crunch at the centre. This problem in mechanicsis easily solved to
give the time for the crunch to occur, i.e., the free-fal time,

Ly = o (2.1)
32Gp,

where po is the density of the gas prior to collapse.

Having determined t;; as the time which discriminates between afast and a slow cooling
rate — what is the cooling rate? The assumption of Rees and Ostriker (1977), and Silk
(1976), isthat the dominant physical process causing cooling will be Bremsstrahlung.
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Thisisthe emission of gamma radiation due to free el ectrons being deflected by nuclei
(which, in the primordial universe, means almost entirely hydrogen and helium nuclei).
The cross section for Bremsstrahlung is derived in standard quantum field theory texts. It
can be written as a product of the electron-nucleus elastic scattering cross-section (the
famous Rutherford scattering formula) and a factor which accounts for the probability of
gammaray emission. In the non-relativistic limit, the Rutherford differential cross-
section is,

do_ (02f
dQ 16E2sin*(6/2)

(2.2)

where E_ = mv®/2 isthe non-relativistic electron kinetic energy, and v the electron

velocity. [See, for example, Mandl and Shaw (1993), Equ.(8.95)]. Note that the total
cross-section is not defined, since integration of Equ.(2.2) diverges near the forward
direction.

In the case of ‘soft” Bremsstrahlung, in which the gamma energies are small compared
with E,, and for non-relativistic electrons, Bjorken & Drell (1964), Equ.(7.64), gives an
approximate expression for the factor which accounts for the probability that the electron-
nucleus collision will emit agammaray. Aswould be expected, thisis proportional to the
fine structure constant, o, but also depends upon the el ectrons vel ocity, v,

8 ) . Emax
—av®-sin®(6/2)-log —~ 2.3
5 oV’ -sin®(6/2) Q(E;nmJ (23)

where ET™, E;“‘”are the maximum and minimum gammaray energies. If a minimum

gammaenergy of zero were inserted in this expression it would be divergent. Thisisthe
well known “infrared catastrophe”, which we will not discuss further but for which see
Mandl and Shaw (1993) or Bjorken & Drell (1964). Fortunately, this divergent term will
cancel in our treatment.

The product of (2.2) and (2.3) provides the Bremsstrahlung cross-section in the non-
relativistic limit. Restricting attention to hydrogen we have,

3.,2 Emax
doe 1 o’V Jog = 2.2)
Emln
) \E

d0  6n EZsin?(0/2
Although the total cross-section is not strictly defined, we can integrate Equ.(2.2) up to
some small angle, 6., to provide an effective cross-section for our purposes. Thus,

min

do P —2dc 8 0,
5o [—92 o[22 _aniog O |- —grlog Jmn 23
N -[sin2(6/2) njl 1¢c g(zj i g( zj 3

Due to the logarithmic dependence of (2.3), we may choose an extremely small
0 i, Without incurring too large a penalty on the size of 3. Thus, we have an effective
cross-section,
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~ 3,,2 Emax
d_G:i.O“Z’ Jog| —L (2.4)
dQ 6r E2 E™

Thisisthe cross-section for hydrogen to produce Bremsstrahlung when subject to a flux
of electrons. (We have taken the usual liberties with the units which we’ll fix later). The
electron flux can be expressed as the product of the free electron number density and

their typical velocity, pl'v . (Strictly there should be an integration over the thermal

distribution of electron velocities). Thus, the total number of Bremsstrahlung photons
emitted per hydrogen atom per second is,

~ 3,,3 EmaX
Photons per second = pl've = i-p,’j av log —~ (2.5)
6n E

We want to find the cooling rate. Thisisthe rate of loss of energy. Consequently we need
to know the average energy of the emitted photons. The quantum field theoretic
expressions derived in Mandl and Shaw (1993) or Bjorken & Drell (1964) show that the
Bremsstrahlung photon spectrum is proportional tol/E, . It follows that the average
photon energy is given by,

max
EY

;[m EVE:LdEy Ema _ Emin
<EV> - . EM y - lo (Emax / émin) (26)
:f i.dE N !
v
EMN =y

Thus, to find the total energy emitted per second as photons, we need to multiply (2.5) by
(2.6), and we find that the divergent logarithmic term cancels. Thus,

S (XBVS ) 3 (13\/3
Bremsstrahlung Power = — . pN =— . (E™ —_E™" ) x =— . pN
g 671 Pe EZ ( ! ! ) 6m Pe E

e

(2.7)

where we have replaced the minimum photon energy with zero, and the maximum photon
energy with the electron’s kinetic energy.

The cooling timescale, T, may be defined as the time which isrequired for al the
electron’s kinetic energy to be lost by Bremsstrahlung. Hence, we can equate the
Bremsstrahlung power with Ed/t. Thisgives,

6n  EZ 3n mlv
T = "N 3,3 o~ N_3 (2.89)
I pea’vy 23 poa

Inserting factors of ¢ and 7 to get the dimensions right gives,

2
3n v m.C
TZZ_S.—CZQNOL:S( . j (2.8b)
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Choosing 0, . to be 0.01°, 0.1° 1° or 5° gives I =235, 177, 119 and 79 respectively.
Actually, the lowest energy photons will be correlated with the lowest scattering angles,
so we should not be concerned about including very small angle. Hence, choosing

0, around 1° suggests that the effective value of 3r/23is~0.04.

Finally, we can express the typical electron velocity in terms of the temperature, i.e.,

\Y 3KkT
P ~ / o (2.9)

which gives,
2
1~ 007+ [mecj KT (2.10a)
Cpoa”\ 7 m.C
This can also be written as,
T~0.07 Nl = KT (2.10b)

cpha’a | m.c?

Before proceeding with our object of rationalising the size of galaxies, it is of interest to
evaluate this cooling timescale for representative gas cloud conditions. Stahler & Palla
(2004), Table 2.2, give some typical conditions of giant galactic gas clouds. We shall
ignore the neutral gas clouds, since these do not have free electrons to cause
Bremsstrahlung. Stahler & Palla distinguish ‘warm’ and “hot” ionised gas clouds as
having the following conditions:-

Gas Cloud py (MP) T (K)
lonised, Warm 0.3x 10° 8,000
lonised, Hot 3x10° 500,000

We assume a high level of ionisation, so that the electron density is essentially the same
as the hydrogen density. We find using Equ.(2.10b) that the Bremsstrahlung cooling
timescale for these conditions is ~0.5 Myrs and ~400 Myrs respectively. These seem to
be sensible timescales for stellar (or galactic) evolution.

We can a'so consider the cooling timescale associated with the universal conditions
which prevail immediately after the freeze-out of hydrogen recombination at ~460,000
years. The temperature is then 2574 K, and the hydrogen number density is1.8 x 10° m™.
We have shown in Chapter 9b of the Tutorial that the remnant free electron density after
freeze-out is ~7 x 10°° times the hydrogen density, i.e. ~1.3 x 10* m™. Thus, the cooling
timescale turns out to be ~6 Myrs. Since thisis along time compared with the doubling-
time for universal expansion at this epoch (i.e. ~0.5 Myrs), we can conclude that
gravitational collapse cannot happen so early in the universe’slife.

We now return to our estimate of the galactic size scale. The argument is that the
gravitational collapse will avoid fragmenting into smaller clouds only if the cooling
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timescale is longer than the free-fall timescale. But a galaxy, being a collection of stars,
must have formed in a manner which permitted fragmentation, since this fragmentation is
the process which leads to the formation of the individual stars. Using Equs.(2.1) and
(2.10b), the required fragmentation can occur only if the cooling timescale falls below the
free-fall timescale,

007t [ KT | 3 (2.11)
Cpea’ag \ m.C 32Gp
But the temperature can be estimated from the loss of gravitational potential, as,
GMM,
KT ~ R (2.12)

Where M is the mass of the whole gas cloud, of current radius R, and MP is the proton
mass. The latter is relevant, rather than the mass of the electron, because, being so much
heavier, it accounts for aimost al the gravitational potential energy. (The protons
subsequently share their larger kinetic energy with the electrons by collisions, i.e. they
come into thermal equilibrium).

In Equ.(2.11), p isthe mass density, whereas p'is the electron number density. So long
astheionisation fraction is high, we can therefore put, approximately, p = M pp'g .

Substitution of thisand (2.12) into (2.11) followed by alittle algebraic simplification,
leads to the condition for fragmentation being,

a* [M
R<3.8— /—P -a, = 4.2x10%*m = 135kpc (2.13)
0'G me

Thus, the prediction is that, until a gas cloud gets within a size of radius ~135 kpc, it
cannot start to fragment. When it does start to fragment, the overall size of the region
occupied by the materia will cease to shrink, since the collapse will now occur
preferentially within the myriad of fragments— each collapsing towards their own local
centres.

Thisis areasonable estimate of the observed size of galaxies. Our own Galaxy has

R ~ 20 kpc. Radio galaxies tend to be larger, e.g. Cygnus A has R ~ 100 kpc. Giant radio
galaxies, such as DA240 and 3C236, can have radii of order 1,000 kpc. Our own Galaxy
lives within a cluster, or Local Group, with aradius of several hundred kpc. Typical
galaxy clusters, if thereis such athing as ‘typica’, have radii of about 1,500 kpc. The
Virgo cluster has aradius of ~ 6,000 kpc. The largest identified structuresin the universe
are the superclusters, i.e. clusters of clusters of galaxies, and have sizes of the order of 50
Mpc or so. Consequently, thereis rather an overlap of size scales between galaxies and
clusters of galaxies, though the superclusters are on alarger scale altogether. However,
Equ.(2.13) at least serves as a crude rationalisation of the order of magnitude of the size
of galaxies— or perhaps the smaller clusters of galaxies.

Rees and Ostriker (1977), and Silk (1976), and others have gone on to argue that the
assumption that Bremsstrahlung dominates the cooling is correct only when the typical
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thermal energy exceeds one Rydberg, i.e. when KT > 0.2a°m_c® =13.6eV , i.e. for
temperatures higher than about 10° K. (Hence applicable to the ‘hot’ interstellar gas
clouds, but not the ‘warm’ ones, see above). Hence, imposing the condition,

_ GMM,

KT > 0.20.°m_c? (2.14)

and inserting R from (2.13) gives a minimum galactic mass of,

5
M=>19"_ Mo M, ~5x10M, = 4x10°M, (2.15)
Og | M,

As alower bound to the mass of galaxies thisis not too bad. Typical galaxies contain
around 10" stars and have masses of about 10”M , , most of which is dark matter. [NB:
Carr & Rees (1979) derived the same algebraic expression as our Equ.(2.15) but appear
to evaluate it incorrectly, their Equ.(44) stating that the lower mass limit is 10°M .

8H.4 Stars

A cloud of galactic gas undergoing gravitational collapse does not necessarily form a star.
To do so it must be massive enough so that the temperatures and pressures reached at its
centre are sufficient to ignite nuclear fusion reactions. Thisiswhat makes a star a star. On
the other hand, if the gas cloud is vastly bigger, we have seen in Section 2 that it might be
large enough to form a galaxy rather than asingle star. So there must be an upper bound
to the mass of asingle star. Thisis determined by the radiation pressure, which tendsto
blow the star apart. For smaller stars, gravity ensures that the star is stable. For larger
stars, the radiation pressure becomes more significant and ultimately cannot be stabilised
by gravity. We will show in Chapter ? that the lower and upper bounds to a star’s mass
arising from the requirement that nuclear fusion occurs in a stable system can be written,

% % %
(o.sem} (ij Mp<Mw<r'78} "

Og m, Og

(31)

p

These lower and upper bounds are:-
9x 10 M, =14 x 10° kg =0.07M: and 5x 10° M, = 8x 10> kg =40M:;  (3.2)

A typical star therefore contains about ag% ~ 10" nucleons, and no stable star differs

from this by afactor of more than ~40 either way. Thus, stars comein only arather
narrow range of masses.

Theradius of astar is not uniquely defined by its mass, since, towards the end of itslifea
star may expand greatly to become red giant, and later on a dwarf star of some sort.
However, confining attention to the main sequence, when the star is stably burning its
inventory of hydrogen, its density will liein the range,

o’M ¢ ’ M2
(183 C;)h] M, <p< 0.00933[0LG m};c} e (33)

p
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Unfortunately, this covers an enormous range, from 4 kg/m?® to ~10** kg/m®. The latter
applies only at the centre of the most massive stars. For many stars, an average density
typical of terrestrial solids provides arough approximation. Since the typical atomic size
is~a, thisdensity is,

M, (34
P solid 4ag .
So, atypical star with ajz ~ 10* nucleons has a size of roughly,
Mo ™ oc;% a, (3.5)

8H.5 Planetsand Asteroids

A planet is essentially an accumulation of material which is not large enough to be a star,
in other words, not large enough to ignite nuclear fusion. The largest planets tend to be
composed of gas. Smaller planets tend to be solid. The smallest planets would have
difficulty retaining an atmosphere due to their low gravity, and for this reason the smaller
planets will tend to be solid. (Isthis correct? They could retain their gasif they were cool
enough. Why can’t giant planets be solid?). The gaseous planets will naturally be
spherical, or, more exactly, slightly oblate ellipsoids, since thisis the shape dictated by
gravity. What about solid planets? This provides the distinction between planets and
asteroids. Planets are (virtually) spherical, whereas asteroids can take irregular, potato
shapes. The distinction is actually a matter of size, since an irregular shapeis
insupportable in alarge enough mass. Gravity will crush and distort even a solid into a
spherical shape, leaving aside those minor perturbations known as mountains. The
guestion, then, is how high can a mountain be before it is crushed by gravity? If the
maximum mountain height is a substantial fraction of the body’s dimensions, then we
have an asteroid rather than a planet. To address this question requires a knowledge of the
strength of solids. Can the strength of solids be deduced in terms of the universal
constants? Well,yes and no.

Initially, assume the compressive strength of the rock comprising the planet is known,
call it oy. Imagine for simplicity a mountain of rectangular section and of height h. The
compressive stress at its base isssmply ¢ = hpg , where p isthe density of the rock and g
is the acceleration due to gravity on this planet or asteroid. The latter can be writtenin
terms of the radius of the planet, R, as g = 4nGRp/ 3. So, the condition that the mountain

avoids being crushed down to a smaller height by gravity is,

hepx ~Ou__ 39 . (4.1)
pg 4nGRp
In the case of earth, for which g = 9.81m/s?, using an ultimate compressive strength of
o, =1000 MPa= 10° N/m?, and the density of iron (7800 kg/m°), gives a limiting
mountain height of 13,000 m. Mount Everest, at roughly 9,000m, complies with this
limit. It appears that the maximum supportable height is not dramatically higher — though
the density we have used is probably too large, and the volume would be a factor of 2 or
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3 smaller since mountains are not rectangular blocks. On the other hand, our assumed
compressive strength is rather generous.

A working definition of an asteroid might be that it can support a mountain whose height
is 10% of the planets radius. Equ.(4.1) then yields the upper limit to the size of an
asteroid, or, equivaently, the lower limit to the size of a planet, namely,

30c
upper lower
Rag;roid = RpIanet = 4TCG;2

(4.2)

Hence, again usingc,, = 1000 MPa = 10° N/m?, and the density of iron (7800 kg/m®)
gives the dividing line between planets and asteroids to be a radius of ~800 km. This

compares with the radius of Pluto (2,300 km) and the radius of the largest asteroid, Ceres,
which is 465 km. Hence, these do indeed conform to our working definition?.

To express (4.2) in terms of the universal constants alone, we need to find expressions for
the typical density of solids and their strength. The former is easy. The mass scale of
atomsis set by the proton mass, M, and the size scaleis set by the ground state size of
hydrogen, ay, given by Equ.(1.3). Hence, the density of solidsis expected to of order,

3M 0
Psaligs ® A

[NB: The mean density of planet earth is 5511 kg/m®]. Equ.(4.3) involves universal
constants alone. To attempt to express the strength of solidsin asimilar manner is rather
more challenging. The energy scaleis set by the electron binding energy, again taking
hydrogen as an exemplar, i.e., the energy scaleis the Rydberg,

energy ~ 0.50.°m_c® =13.6eV = 2.2x10**J (4.43)

am.c

3
] = 2680kg/ m® (4.3)

Actually, the energy levels of a single electron orbiting a nucleus with charge Z are given
by E, = Z*a*m_c®/2n?, where nisthe principal quantum number. However, for the
outermost electron, the other electrons which lie between it and the nucleus will shield it
from all but the one excess charge. Hence, for the outermost electron in an atom we can
crudely approximate the binding energy by replacing Z by 1, givingE,, = a®m_c®/2n?.
The elements of most interest, comprising our planetary rocks and metals, will have
outermost orbitals with n of 3 and 4, including aluminium, silicon, calcium, iron and
nickel, for example. Thus, we shall assume n = 4 for our energy scale, giving a
refinement to Equ.(4.4a) asfollows,

2 2

m.c

energy ~ & — 0.85eV = 1.4x107°J (4.4b)
Inter-atomic forces act over a distance comparable with their size. Atoms do not differ
greatly in size, the heavier atoms being of similar size to the lighter atoms. Thisis by
virtue of the inner electrons being held closer to the nucleus by the larger charge of the

2 Unfortunately, the recent ruling of ???? does not agree. They seem determined to downgrade Pluto to a
planetessimal.
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heavier nuclei. Hence, the size scale of all atomsisroughly that of the hydrogen atom, ao.
Thereis, however, adight effect of mass, and so we shall assume a size scale of ~2&, for
the solid elements of interest, e.g. iron.

A typical force scale obtains when the energy scale of Equ.(4.4b) isdivided by the size
scale, 2&, giving,

3m2C3

force~ 2 e® _13x10°N (4.5)
647

Dividing through by the atomic cross-section, of order 4a2 ~10*m?gives a quantity
with the dimensions of stress,

545
Y oungs ~ oczégec ~10"N/m? =10°MPa (4.6)

hS

Thisisthe stress required to displace an atom a distance equal to itsradius— so the strain
is of order unity. Consequently, this stressis arough estimate of the expected magnitude
of the elastic modulus of the material (Y oung’s modulus). In fact, it is quite a good
estimate, structural steels having a Y oung’s modulus at room temperature of ~2 x 10°
MPa, with most other solids being rather less stiff.

However, the manner in which Equ.(4.6) was derived suggests that it could equally be
interpreted as the strength of the material. In truth, the strength of solidsisfar less than
their elastic modulus, typically by afactor of between 100 and 1000, and possibly even
greater. Thus, the strongest steels have ultimate tensile strengths (UTS) of ~1000 MPa,
and less than half this for most structural steels. Rocks, of course, will be substantially
weaker. The reasons for the shortfalls in the strengths of solids, compared with this
simplistic theoretical strength, are well known. It is due to the inherent flaws in solid
materials: dislocations, inclusions, grain boundaries, microcracks, multiple phases, etc. In
particular, the movement of dislocationsin ductile metals typically occurs when applied
strains reach ~10°%, and hence at stresses which are around 10 of the elastic modulus,
thus defining the yield strength. In principle it is possible to determine the strength of a
solid material from first principlesin terms of the universal constants. In practice, the
complexities of real, anisotropic, inhomogeneous, multi-grained, multi-phase, impurity
bearing materials full of dislocations, disclinations, inclusions, vacancies and cavities
makes this exercise impracticable. Nevertheless, afactor of ~100 to ~1000 reduction in
the theoretical strength is easily rationalised as a rough estimate. Shouldn’t | include it
then? We shall refer to this factor as X4 Thus we have,

1 o’mic®
X . 2560°

Strength ~ ~10% —10°N/m? =10% -10°MPa 4.7
Substituting (4.7) and (4.3) into (4.2) thus allows us to express the lower limit to the

planetary size in terms of the universal constants (permitting ourselves the fiddle-factor
xfract),

5n N
Rupper_ — Rlower — . 48
asteroid planet \/96)( o G(X.miM sc ( )
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Using Xiract @pproaching 1000 reproduces the dividing line between planets and asteroids
derived above, i.e., aradius of ~800 km. Equ.(4.8) can be written in terms of the
dimensionless gravitational ‘fine structure’ constant, o, . When normalised by & this

gives,
R, Ry |
asteroid _ planet _ \/57[—& =0.013 * ~10% (49)
a, q 96X frt QG g

where we have used X4t = 1000 in the last expression.

The demarcation between planets and asteroids can also be expressed in terms of mass,
using the density given by Equ.(4.3). We find,

M upper M lower 57'[ o % o %
asteroid _ planet — ( . _J = 2X1076 (—J = 3X1O48 (410)
M b M p 96X frad Hg Qg

where we have again used Xra: = 1000 in the last expression. The smallest planets
(largest asteroids) therefore have a mass of around 5 x 10 kg. (The earth’s mass i's about
1000 times this, being about 10 times the linear dimension).

8H.6 Land-Based Life Forms

Fortunately, for this exercise, we do not need to resolve what constitutes ‘life’. We are
only concerned with the limitations imposed by mechanical strength or mechanical
processes. There is awidespread fallacy that the maximum size of land animalsis
determined by their static strength: if an elephant were much bigger, its legs would snap.
In asensethisis approximately true, but it does not refer to static strength. We have
already seen that the limit on static strength is what defines the maximum height of
mountains, which is of the order of 10* metres on earth. Why should an elephant not be
far larger, then? The distinction between mountains and animals is that mountains do not
generally move around. Energetic motion is far more demanding on the strength of an
animal than mere static support against gravity, as anyone who has broken a bone playing
sport will testify. In particular, the sudden arrest of rapid motion, such asin acollision, is
probably the most structurally demanding event. Such impacts have the capacity to
induce transient stresses which are far greater in magnitude than those due smply to self
weight. Animals are poorly designed in the sense that they have the capacity, under their
own musculature alone, to reach running speeds such that a collision with a solid object
like alarge rock will do them agreat deal of harm. However, as arule of thumb, we
would expect an animal to be able to sustain a standing fall without sustaining damage.
Thisisthe criterion we shall use to define the upper bound size of land based life forms.

Approximating the animal to a cube of side h, in true physicist’s fashion, its gravitational
potential energy is 0.5mgh. If the fracture energy per unit areais Ga, the animal can
sustain afall without breaking so long as 0.5mgh < h®Gga. Thus, the maximum height of
areasonably robust animal is,
h™ = G (5.2
P9
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where p isthe density of the animal. Using 1000 kg/m®and a fracture energy of 16,000
Jm? gives h™ = 1.8 metres. Given that larger animals like horses and elephants arein
danager when they fall, thisis a pretty good estimate.

The value assume for the fracture energy requires some discussion. Using the energy
scale defined by Equ.(4.4b), and dividing by the area scale given by (2a,)’, we get an
energy per unit area of,

G, - energy a*mdc?

=12J/m? 5.2a
e area 128h2 (5.29

Engineers use a quantity called the “toughness”, which isroughly /YG,, , whereY is

the material’s Young’s modulus. Using Y ~ 10°> MPatogether with Gyay ~ 12 Jm?, gives
atoughness of ~1 MPavm. Thisis agood estimate for the toughness of the most brittle
materials, such as ceramics. However, ductile materials have far higher toughnesses.
Ductile steels have toughnesses in excess of 100 MPavm, so that their fracture energy is
around 10,000 times that derived from Equ.(5.2).

The reason why ductile materials have much larger toughness than the simplistic
theoretical estimate impliesis essentially the same as the reason why their tensile strength
is so much lower (as we saw in Section 4). The tensile strength is lowered because large
deformations are possible at much smaller stresses than implied by elastic behaviour, due
to mediation by dislocations. The same phenomenon, allowing large deformations to
occur, resultsin large amounts of absorbed energy prior to fracture. Thus, the same
factor, Xsraet, Which we used to reduce the tensile strength of the material may now also
be used to increase its fracture energy. Thisis, of course, an extreme simplification (no
complaints from material scientists, please!). We approximate the fracture energy as,

X a*mdc?
et 128K2

using Xt ~ 1000, as before. Hence we now get an estimate of fracture strength which
reproduces a reasonable maximum animal size on earth, i.e. around a couple of metres.

Gy ~ =12X,., J/m* ~12,000/ m? (5.20)

Hence, using Equ.(5.1) and substituting for the fracture energy from (5.2b), the density
from Equ.(4.3) and alsog = 4nGRp/ 3, gives,

max 2
w1 (5.39)
a, 48 GRM m,

If we also substitute the minimum planetary mass from Equ.(4.8), and use Xia: = 1000,

we get,
max 3 % % %1
h™ _ [”Xfm J (iJ - 7z[iJ = 8x10% (5.3b)

a, 120 Og Og
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Thus, for the minimum planetary size (~800 km radius), the maximum land animal sizeis
predicted to be ~4 metres.

The maximum animal size is ssmply converted to a maximum animal mass using the
density, Equ.(4.3), giving,

max 3 % % %
M 3(%J [iJ :9x104(ij ~10% (5.4)

M, 4r| 120 | | o o

which is ~170 tonnes. We can expect our 4 metre high animal on our very low gravity
small planet to be very heavy. However, the mass will have been over-estimated by virtue
of the animal being assumed to be cube-shaped. Redlistic volumes for a given height
might be only afew percent of this. Nevertheless, we expect the answer to be of the order
of afew tonnes or tens of tons.

8H.7 Fluid-Floating Life Forms (Oceans, Gas Planets)
Also covers life forms which might ‘swim’ in gas giant planets. To be added.

8H.8 Molecular Basisof Life
i.e. proteins, DNA, etc. To be added

8H.9 Atoms
To be added

8H.10 Atomic Nuclei
To be added

8H.11 VariousBlack Holes
To be added

8H.11.1 Stellar Black Holes
To be added

8H.11.2 Galactic Black Holes
To be added

§H.11.3 Exploding Black Holes
To be added
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Table1: Size and Mass of Things Nor malised by ap and M

Object Sizelag

MassM,

Observable o 37
Universe 2f—~10

f3

M
(—"Jiz ~2x10%
me ag

Superclusters
of galaxies

Galaxies 4 M

Galactic
Black Holes

Stars

limit for
planets)

Og

- ’% - 19
(and upper ag?~10 (0.367(1

JE

i.e. 10® < % < 5x10%®

M Og

€ p

. J% M., [7.78}%
<—X

p

Lower Limit [ b1 o [
for Planets = Sex o 0.013 — 10%* ( o
Upper Limit fract G G 96X

fract
for Asteroids

Og

% %
iJ =2x106(ij ~ 3x10%

Og

Stellar Black
Holes

Exploding
Black Holes

Life

Land-based
fract % i % — 7 i % — 8X1010 i TT’X ?ract
120 Og Og 4r| 120

I

a

Og

% %
—j :9x104£i] ~10%

Og

Lifein
oceans or
within gas
planets

Molecular
Basis of Life

Atoms

Atomic
Nuclei

Numerical vaues use: f =5; Xar = 1000 Need to changeto f = 3.46
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