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1. Introduction 
We have noted in Chapters 13 and 14 that the crucial slowness of the reaction which 
initiates stellar burning of hydrogen, i.e. eeDpp , is due in part to the 

need for the protons to penetrate the Coulomb barrier before they can react. This 
being the case, we have queried (Chapter 14) why the second reaction, i.e. p + D 

 

3He + , should not also be slow, since a Coulomb barrier needs to be penetrated in 
this case also. Yet these two reactions differ in rate by about a factor of 1017. In this 
Appendix we derive the rate of the p + D 

 

3He +  reaction from first principles. We 
shall see that it is indeed suppressed by the Coulomb barrier. This is the reason for 
this reaction rate reducing extremely steeply, effectively switching off, below 
temperatures of ~107K. We conclude that the 17 orders of magnitude difference in the 
two reaction rates must actually be due entirely to the weakness of the weak nuclear 
force, contrary to the impression given by many popular physics books.  

2. The Contributing Matrix Elements 
We are dealing with a system of two protons and one neutron. The ground state of 
helium-3 will be an S-state. The two protons must therefore have anti-aligned spins, 
by the exclusion principle, so the overall spin of 3He must be ½, arising from the 
neutron spin. In the free state, the two proton spins may alternatively be aligned, in 
which case, to be consistent with the exclusion principle, they must be in an odd L 
state.   

Following the derivation of the proton-neutron matrix elements (Appendix A2) we 
consider two interaction Hamiltonians: the electric dipole interaction, 

cosreE2H 0I ; and the magnetic dipole interaction, agMBH 0I , where agM  is 

the magnetic moment operator and E0 and B0 are the electric and magnetic fields due 
to the gamma ray photon. [In the case of photodisintegration, this is the incident 
radiation. In the case of proton capture, this is the emitted photon].   

We firstly consider the magnetic dipole interaction. Recall from Appendix 2 that the 
magnetic dipole matrix element was non-zero for the n-p system only when the free 
state was chosen to be a spin singlet state, in contrast to the bound state (deuteron) 
which is a spin triplet. The spin dependence of the strong nuclear potential then leads 
to a non-zero matrix element. For the ppn system, considering just S-wave (L = 0) 
states, there is just one possible total spin state, spin ½, in which the two protons form 
a singlet sub-state. The matrix element between two such states of differing energy is 
zero, by orthogonality. Unlike the n-p system we do not have the choice between two 
different spin states  with differing nuclear potentials. On the other hand, if we 
consider the free state to be a P-wave (L = 1), and the spin state to be 3/2

1, then the 
two states will be eigenfunctions corresponding to different (spin dependent) nuclear 
potentials. However, the matrix element is again zero due to the angular integral (i.e. 
S and P states are always orthogonal, irrespective of the radial dependence). We 
conclude that the magnetic dipole matrix element is identically zero (at least in first 
                                                     

 

1 NB: The matrix element of the operator agM between spine ½ and spin 3/2 states can be non-zero as 

long as the two states have the same azimuthal spin component. 



order perturbation theory), essentially as a consequence of the exclusion principle. 
Since the magnetic term is dominant in the n-p system (accounting for 99+% of the 
reactions below ~108K, see Appendix 2) we can therefore expect the p + D 

 
3He + 

 
reaction rate to be much slower than the capture of protons by neutrons (even before 
accounting for the Coulomb barrier).  

The electric dipole matrix element is non-zero, however. In view of the presence of 
the cos  factor in the interaction Hamiltonian, the only non-zero matrix element will 
be that in which the free state is a P-wave. The two proton spins must then be aligned, 
by the exclusion principle. According to whether the neutron spin is aligned or anti-
aligned with the proton spins, the total spin will be 3/2 or ½. However, because the 
bound state (3He) is spin ½, and because the electric dipole interaction does not affect 
the spin, the spin 3/2 free state will give a zero matrix element. Consequently, the only 
non-zero matrix element contributing in first order perturbation theory is,  

matrix element =  )free(P,/spincosreE)bound(S ,/spin 2
1

02
1     (Equ.1)  

noting that the factor of r in the interaction Hamiltonian is what prevents 
orthogonality making the radial integration zero. Note that Equ.1 is the matrix 
element factor per proton, i.e. a charge of just e has been assumed. Since there are 
two protons, this matrix element is duplicated for the other proton.   

The fact that the spin state is the same for the free state as for the bound state is 
fortunate. This is because we do not yet know what the effective nuclear potential is 
for 3He. We can, however, determine the effective potential for the spin ½ state (or, 
rather, we can determine possible pairs of V0 and a) from the measured binding 
energy of 3He. This same potential & range combination will apply also for the free 
state because it is also spin ½. Had the spin 3/2 free state been involved, we would 
have had a difficulty determining the effective potential and range for this spin state.  

3. Effective Nuclear Potential For 3He 
The radial Schrodinger equation is,   
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      (Equ.2)  

Now, to write a Schrodinger equation in just one (radial) coordinate, we must be 
assuming a two-body problem. Strictly, we are now dealing with a three-body 
problem, two protons and a neutron. However, we intend to treat the deuteron as if it 
were a single particle in its own right. The two-body system in question is therefore 
the p-D system. Since these two particles are of mass Mp and 2Mp (approximately), 
the reduced mass m is just (2/3)Mp.   

A positive potential is repulsive, so the centrifugal force is seen to be repulsive, as it 
should be. In the simple square-well model for the nuclear force we have,     
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for r > a       (Equ.3b)  

For the deuteron, Z = 1 and the Coulomb potential does not contribute. For helium,  
Z = 2 and the Coulomb potential is .r/e~ 2  We have 44.1e~ 2  MeVfm.   

The known binding energy of helium-3 is B = 7.7180MeV. We have numerically 
integrated the Schrodinger equation (EXCEL macro NSW1a) to find combinations of 
V0 and a which reproduce this binding energy to at least 4 decimal places. These are 
given in the Table below. The Table also shows the values of )acot(a and a , 

where mB22 and )BV(m2 0
2 . These two quantities would be equal if 

it were not for the influence of the Coulomb potential. It can be seen that they are 
quite close, which shows that the Coulomb potential does not have a dramatic effect 
on the binding energy, though it does have a noticeable effect. The numerical 
integration applied the boundary condition near the origin at r = 0.001 fm and used an 
integration step size ( r) of 0.01 fm. Sensitivity to a change to a step size ( r) of 
0.0025 fm caused a change in the required V0 to reproduce the required binding 
energy of only  0.08%.  

Effective Nuclear Potential And Range For 3He

 

a (fm) V0 (MeV) )acot(a

 

a

 

4 17.99 2.0287 1.9891 
3 24.231   
2 40.14 1.0294 0.9946 

1.5 60.498   
1.2 85.247 0.6278 0.5968 
1.0 114.364   
0.8 166.216 0.4259 0.3978 

 

Note that there is no simple combination of V0 and a (e.g. a2V0) which is invariant. 
There was no other bound state of helium-3 for the above potentials (i.e. no excited 
states of helium-3, which I believe is in fact the case).   

If the above prescription for the nuclear 3-body problem were correct, we would 
expect to be able to derive the binding energy of tritium (pnn) from the same potential 
& range combinations just by switching off the Coulomb potential. The actual binding 
energy of tritium is 8.4818 MeV, some 0.7638 MeV larger than that of helium-3. The 
sign of this binding energy difference is as we would expect, being due to the 
repulsive nature of the Coulomb force causing helium-3 to be less tightly bound.  
Running NSW1a with the Coulomb potential switched off, and for nuclear force 
ranges of 4, 2, 1 and 0.6 fm, gives increases in binding energy of 0.056, 0.207, 0.527 
and 0.676 MeV respectively. We see that, for the shortest ranges we are indeed 
approaching the correct binding energy difference (0.7638 MeV). The lesson from 
this observation is that for nuclei larger than the deuteron, the absolute size (a) is 
significant in determining nuclear properties.      



4. Numerical Evaluation Of Matrix Elements 
In the case of the n-p system we used the zero-range approximation to find algebraic 
expressions for the matrix elements (see Appendix 2). This was possible because we 
have simple, exact, analytic solutions for the wavefunctions in the absence of a 
Coulomb potential. Unfortunately, the presence of the Coulomb potential makes it 
preferable to resort to numerical solutions. The EXCEL macro NSW1b has been used. 
Before proceeding to the p + D reaction, we carry out checks on the numerical 
procedure by reproducing the analytical results for the n-p system.  

4.1 Check of Program NSW1b Against n-p Matrix Elements 
For application to the p-D system we shall only need the electric dipole matrix 
element between the bound S state and a free P state, both of the same spin state 
(hence the same nuclear potential). However, for completeness, the program NSW1b 
is also checked here for the case of the magnetic dipole matrix element between two S 
states of different spin (i.e. different nuclear potentials). We start with the latter.  

4.1.1 Check of )free(S)bound(S 13 For The n-p Potentials 

Recall first of all that matrix elements involving free states are defined only if a 
normalisation volume is specified. The matrix element has been determined in  
Appendix A2 to be,  
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      (Equ.3)  

where, mB22 , B is the deuteron binding energy (2.2245MeV), B
~

m2
~ 2

, 

and also a/1
~ 1 , where 1a is the n-p singlet scattering length, i.e. 23.69fm. Hence, 

1fm04221.0
~

, and MeV07415.0B
~

. E is the total energy of the two nucleons 

in the cms system (the eigenvalue of the Schrodinger equation), and mE2k 2 . 
Finally, rmax is the radius of the normalisation volume. The numerical value of the 
matrix element is meaningless without rmax being specified.  

It should be recalled that Equ.3 was derived on the assumption that n)ar(k max 

for some integer n. Numerical evaluation for combinations of energy and rmax not 
obeying this relationship may be expected to differ from Equ.(3), i.e Equ.(3) will not 
be correct in such cases.  

It should also be recalled that Equ.3 was derived using the zero-range approximation. 
We may expect, therefore, that numerical evaluations will agree better with Equ.3 if 
combinations of V0 and a are employed in which a is small. Because of this we have 
used potentials with two different ranges, as follows,     

Effective n-p Nuclear Potentials

 

Singlet Triplet 

 

V0 (MeV) a (fm) V0 (MeV) a (fm) B 
experimental 16.1 2.4 35.08 2.054 2.20759 
reduced a

 

99.2 1.0 123.27 1.0 2.19328 

 



The first line gives values (from Evans) derived from experimental data, and hence 
are best estimates. The second line gives equivalent potentials with the range reduced 
to 1 fm. For the triplet state, V0 was first found from a = 1fm using the exact solution 
for a square well potential to reproduce the binding energy of 2.2245MeV. The last 
column of the Table gives the binding energies derived from the program NSW1a for 
the stated triplet potentials. They are close enough to the true value for our purposes. 
Note that there is no bound singlet state and B

~
is not a binding energy. Finally, the 

singlet potential for a = 1 fm was found using the energy quantisation expression for a 

square well, i.e. 
~

a)~acot(~a , where )B
~

V(m2~
0

2 and B
~

m2
~ 2

, 

whilst noting that this is not a bound state because 
~

 is negative.  

The following Table compares the numerical results of NSW1b with Equ.3 for the a = 
1 fm potentials. Equ.3 is evaluated using the binding energy compatible with the 
program, i.e. B = 2.19328MeV. Results are presented for rmax = 57.32fm. We have not 
respected the requirement n)ar(k max , so this may introduce some of the 

differences observed. For the lowest energies calculated, the wavelength of the free 
state (2 /k) is far greater than rmax, and this would introduce serious error in the 
numerical results if special precautions were not taken. For the low energy cases (in 
italics in the Table) NSW1b applies a correction to the normalisation of the free state. 
Details are given in a note at the end of this Appendix. This was never added. 

Matrix Elements )free(S)bound(S 13  For n-p System 

      (rmax = 57.32fm, No Coulomb Potential, Nuclear Potentials with a = 1fm) 
E (MeV) M.E. (from NSW1b) M.E. (Equ.3) 

0.0015625 0.0921 0.0937 
0.003125 0.1288 0.1311 
0.00625 0.1783 0.1815 
0.0125 0.2422 0.2465 
0.025 0.3185 0.3241 
0.05 0.3986 0.4050 

0.074  0.4462 
0.125 0.4879 0.4892 
0.25 0.5181 0.5146 
0.5 0.5008 0.4960 
1.0 0.4422 0.4326 
2.0 0.3399 0.3352 
4.0 0.2316 0.2292 
8.0 0.1414 0.1398 

16.0 0.0782 0.0785 
32.0 0.0417 0.0418 
64.0 0.0210 0.0216 

128.0  0.0110 

 

Note that at small energies the matrix element drops to zero proportional to E. At 
large energies the matrix element also drops to zero, proportional to 1/E. Graphical 
plots of these results follow

 



                            

4.1.2 Check of )free(Pcosr)bound(S 33 For The n-p Potentials 

Appendix A2 has also derived an analytic expression for this electric dipole matrix 
element in the zero-range approximation, namely,  
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)free(Pcosr)bound(S   (Equ.4)  

Numerical and graphical results from the numerical integration program NSW1b are 
compared with Equ.4 as follows, for V0 = 123.27MeV and a = 1fm, 
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Figure: Magnetic Dipole S-S Matrix Element for n-p System (Check of Numerical Procedure)
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Matrix Elements )free(Pcosr)bound(S 33  For n-p System 

      (rmax = 49.6fm, No Coulomb Potential, Nuclear Potentials with a = 1fm) 
E (MeV) M.E. (from NSW1b) M.E. (Equ.4) 
0.00625 0.00946 0.0092 
0.0125 0.01882 0.0183 
0.025 0.03723 0.0362 
0.05  0.0707 
0.1 0.1395 0.1353 
0.2  0.2486 
0.3 0.3549 0.3435 
0.5 0.5071 0.4908 
1 0.7257 0.6981 
2 0.8399 0.8098 

2.19328 0.8586 0.8115 
2.5 0.8496 0.8081 
3 0.8046 0.7920 
5 0.7134 0.6880 

10 0.5025 0.4789 
20 0.3004 0.2891 
40 0.1640 0.1600 

100 0.06025 0.0682 
200  0.0348 

                    

Figure: Electric Dipole S-P Matrix Element for n-p System: Check of Numerical 
Procedure
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The matrix element again falls off as 1/E at large energy, but at small energies the 
drop-off is less steep than for the S-S matrix element, falling proportionally to E.  

4.1.3 Sensitivity of n-p Matrix Elements to Coulomb Potential 
To gain an impression for the sensitivity of a matrix element to switching on the 
Coulomb potential, we consider the n-p system as if a Coulomb potential applied. 
This may be thought of as being what the p-p matrix elements would be if the 
exclusion principle did not forbid their existence.  

4.1.3.1 )free(S)bound(S 13 With Coulomb Potential 

For comparison, we use the same singlet and triplet potentials as in Section 4.1.1, 
namely V0 = 99.2 MeV, V0 = 123.27 MeV respectively, with a = 1 fm. The Coulomb 
potential is switched on only for r > a and is 44.1e~

 

 where,r/e~)r(V 22 MeV.fm. 
The switching-on of the Coulomb potential changes the bound state binding energy 
from 2.19328 MeV to 1.68504 MeV. [I found it surprising, initially, that the Coulomb 
potential causes the binding energy to decrease rather than increase. This was because 
the Coulomb potential causes the apparent depth of the potential well to increase from 
V0 to V0 + Vc, where a/e~V 2

c . However, it must be remembered that the bulk of 

the wavefunction lies outside the region of the nuclear potential, i.e. it is far more 
likely to find the nucleons spaced by r > a. The effective force of attraction is 
therefore the nuclear force minus the repulsive Coulomb potential. Clearly this will 
weaken the binding].   

In the Table below we compare the numerical results from program NSW1b with the 
analytic result of Equ.(3). The latter does not account for the Coulomb potential. 
However, we use the shifted binding energy (B = 1.68504 MeV) in Equ.(3). This 
roughly accounts for the Coulomb effect on the bound state in Equ.(3), but there is no 
such allowance for the free state. In the numerical results from NSW1b we have used 
rmax = 57.32 fm. However, for small energies, NSW1b normalises the free states by 
using an extended radial integration, up to a radius which is given by, 

Figure: Electric Dipole S-P Matrix Element for n-p System: Check of Numerical 
Procedure
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2
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      (Equ.5)  

where Nnorm is some positive integer, a value of 4 having been generally used here. 
Although NSW1b uses this increased integration range, the resulting normalisation 
constant is rescaled as if the normalisation had been to radius rmax, i.e. the 

wavefunction is multiplied by maxnorm r/r . Hence, rmax may be deployed hereafter as 

if it had been the normalisation radius, and the matrix elements etc for small energies 
can be compared directly with those at higher energies.  

E (MeV) Equ.(3): Coulomb 
Barrier Not Present 

NSW1b With 
Coulomb Barrier 

5 0.1782 0.2159 
2 0.3199 0.3892 
1 0.4314 0.4978 

0.5 0.5127 0.5025 
0.25 0.5449 0.3839 

0.125 0.5254 0.231 
0.05 0.4391 0.0923 

0.025 0.3525 0.0385 
0.0125 0.2686 0.0126 

0.00625 0.1979 0.00283 
0.003125 0.1430 0.000369 
0.0015 0.1002 1.87E-5 

0.00075 0.0713 3.8E-7 

                

Figure: Effect of Coulomb Barrier on S-S Matrix Element
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We have already seen that the matrix element without a Coulomb barrier reduces to 
zero at low energies proportionally to E. The above logarithmic plot shows that at 

the lowest energies, the matrix element with the Coulomb barrier varies as E/be . 
The graph shows that b  0.369 MeV. This energy dependence can be derived 
simply as follows. Firstly, we note that the bound state wavefunction is little changed 
by the presence of the Coulomb potential:-  

Wavefunction versus Radial Distance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60

r (fm)

w
av

ef
u

n
ct

io
n

 (f
m

^-
3/

2)

Bound, No Coulomb

Bound, With Coulomb

Free (0.05MeV), No Coulomb

Free (0.05MeV), With Coulomb

 

Figure: Effect of Coulomb Barrier on S-S Matrix Element
0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40

1/ E ^0. 5  ( M eV )

Equ.(3) No Coulomb Barrier

NSW1b With Coulomb Barrier



In contrast, the free state wavefunction is markedly reduced by the Coulomb potential. 
(The above illustration is for a free state energy of E = 0.05 MeV).  

The reason for the marked change in the free state wavefunction is simply that, with 
the Coulomb potential switched on, the free state has negative kinetic energy (i.e. has 
exponential radial dependence rather than oscillatory) for r < 28.8 fm. This leads to 
the free state wavefunction being far smaller in the region where the bound state 
wavefunction is significant (i.e. r < 20 fm). In the above example with E = 0.05 MeV, 
it is smaller by a factor of ~4. It is simply this which results in the matrix element 
being smaller by a similar factor.  

The above graph also illustrates clearly that most of the contribution to the matrix 
element comes from outside the range of the nuclear forces (i.e. from r > a = 1fm in 
this case).  

Having made this observation, we now realise that energy dependence of the matrix 
element must derive from that of the free state in the region r < 20 fm, and hence 
depend essential on how much of the free state manages to penetrate the Coulomb 
barrier from outside. Note, though, that this does not mean how much of the free 
state exists in the interior region r < a . We have seen that very little does, at any 
energy, and indeed this is the basis of the zero-range approximation. It is actually the 
size of the free wavefunction within the region where the Coulomb potential is 
significant (a < r < E/e~r 2

E ) that matters. This is the region within which the free 
state has negative kinetic energy, the exponential decay length being (the reciprocal 

of) /)E)r(V(m2 , noting that this varies with r . Roughly speaking, we may 

expect the magnitude of the wavefunction to diminish from r = rE to r = a by a factor 

of 

Er

a

dr

e . The integral may be evaluated exactly to give a factor, 
(Equ.6) 
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For energies sufficiently small compared with Vc, 2/  and hence the sin term is 
zero and we get,  
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(for p-p )       (Equ.7)  

hence deriving the functional dependence on energy seen in the numerical results, and 
also confirming that the numerical value for b given above is very close to the 
expected value. This validates the numerical procedure of program NSW1b.  

4.1.3.2 )free(Pcosr)bound(S 33 With Coulomb Potential 

Since the p-D cross section will require the S(spin ½)-P(spin ½) matrix element, we 
also examine the sensitivity of the n-p system matrix element to turning on the 
Coulomb potential. [The same remarks apply as in Section 4.1.3.1, namely that this 



does not correspond to any actual physical process]. In this case we use the best 
estimate triplet potential (for both free and bound states), i.e. V0 = 35.08 MeV and  
a = 2.054 fm and rmax = 57.32 fm. Program NSW1a gives the bound state binding 
energy when the Coulomb potential is switched on to be 1.94702 MeV. The 
comparison between the numerical results of program NSW1b, with the Coulomb 
potential on, and Equ.4 (which does not account for the Coulomb barrier  although 
we use the amended binding energy) is given by the following Table and graphs,  

E (MeV) Equ.(3): Coulomb 
Barrier Not Present 

NSW1b With 
Coulomb Barrier 

10 0.4824 0.5438 
7.5 0.5786 0.6516 
5 0.7133 0.7671 
3 0.8440 0.8988 

2.2 0.8808 0.8930 
1 0.7928 0.7532 

0.5 0.5749 0.5058 
0.25 0.3566 0.2820 
0.1 0.1643 0.1049 

0.05 0.08632 0.04202 
0.025 0.04426 0.01396 

0.0125 0.02241 0.003865 
0.00625 0.01128 0.000756 

0.003125 0.005658 9.28E-5 
0.0015 0.002720 4.46E-6 

0.00075 0.001361 8.64E-8 

 

Again it can be seen , from the second graph below, that the matrix element varies 

with energy, at sufficiently small energies, proportionally to E/be and the numerical 
results give b ~ 0.369 from the last two data points, in good agreement with the 
theoretical estimate derived above. 



                                          
Figure: Comparison of S-P Matrix Element With and Without Coulomb Barrier
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Figure: Comparison of S-P Matrix Element With and Without Coulomb Barrier
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4.2 Derivation of the p-D Matrix Element 
Having established the technique, NSW1b is now used together with the effective 
nuclear potentials of Section 3 to evaluate the matrix element for the p-D system. We 
choose (arbitrarily) the a = 2 fm potential with V0 = 40.14 MeV. The Table below 
gives the matrix element (in fm) as a function of energy. Equ.4 is also shown for 
comparison, using the helium-3 binding energy (7.718 MeV). The reduced mass is m 
= 625.515 MeV, and the reference normalisation radius is rmax = 57.32 fm, as used 
above. (Note that the actual normalisation is carried out over a greater radius for low 
energy free states, see above discussion).  

Values of )free(P,/spincosr)bound(S,/spin 2
1

2
1 for the p-D System (fm) 

E (MeV) matrix element (fm) 
from NSW1b 

(with Coulomb barrier) 

matrix element (fm) 
from Equ.4 

(no Coulomb barrier) 
100 0.003202 0.07776 
60 0.02668 0.1181 
40 0.07380 0.1585 
20 0.2619 0.2349 
10 0.4301 0.2874 

7.71779 (B) 0.4361 0.2923 
5 0.3959 0.2789 
2 0.2455 0.1911 
1 0.1362 0.1187 

0.72 (Vc) 0.09995 0.09124 
0.5 0.06915 0.06880 

0.25 0.03229 0.03553 
0.1 0.01036 0.01476 

0.05 0.003757 0.007477 
0.02 0.00075 0.00301 
0.01 0.000164 0.001511 

0.005 2.32E-5 0.000756 
0.002 5.99E-7 0.000303 
0.001 1.16E-8 0.0001511 

0.0005 4.73E-11 0.000076 

               



                              

The graphs show that there is a band of energies (roughly 12 to 25 MeV) where the  
n-p and p-D matrix elements are of similar magnitude, but that for other energies the 
p-D matrix element tends to be much smaller. Its largest value is about half that for  
n-p. At sufficiently large and sufficiently small energies, the p-D matrix element is 
orders of magnitude smaller than that for n-p. At low energies, this is the result of the 
Coulomb barrier. The last pair of data points gives a value b = 0.420 for the parameter 

in the energy factor E/be . This compares with the theoretical estimate of 0.405 from 
Equ.7 (recalling that p-D has a larger reduced mass than n-p). Hence, the low energy 
behaviour conforms to expectation.   

Figure: p-D <S-P> Matrix Element (Comparison with n-p matrix element and Equ.4)
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The reason for the steeper reduction in the matrix element at high energies is unclear.  

5. Calculation of the p + D 

 
3He +  Reaction Rate at a Given Temperature 

Following Appendix A2, the reaction rate for the photodisintegration reaction 3He + 

 
 p + D is,    

22
02

max )free(Pcosr)bound(S)eE(
k

mr2
2w

 

      (Equ.8)  

and w is the probability of disintegration per second per helium-3 nucleus. The second 
term in brackets in Equ.8 is the density of final states. For the numerical values of the 
matrix element given above we must use, for consistency, rmax = 57.32 fm.  

The leading factor of two accounts for the fact that the photon may couple to either of 
the two protons, and hence doubles the reaction rate. [There is a problem of principle 
here. If the helium-3 is regarded as a particle of charge 2e, then the matrix element 
involves (2eE0)

2, and this results in double the reaction rate given by Equ.8. Why is it 
not correct to do the calculation this way? We note that at the photon energies 
involved, i.e. ~5.5MeV or above, the photon wavelength is ~220fm, and so the photon 
cannot resolve the two protons. It may be that Equ.8 is wrong and should be 
multiplied by 2].  

Recall from Appendix A2 that the cross-section, photon flux and fine structure 
constant are given by,   
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0       (Equ.9)  

where  is the photon energy. Hence, Equ.8 gives,    
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    (Equ.10)  

We noted in Appendix A2 that our derivation of the electric dipole cross-section was 
too large by a mysterious factor of 4 which we failed to trace. Anticipating that the 
same error occurs here, we re-write Equ.10 as,    
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k

rm
2

  

    (Equ.10)  

Inserting the values of the constants into Equ.10 gives,    

2

dis )free(Pcosr)bound(S
kc
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    (Equ.11)  



It is the matrix element in Equ.11 which carries the dimensions. Thus if the matrix 
element is evaluated in fm (as in the above numerical data) the cross-section is in fm2 

= 0.01 barn. To calculate the capture cross-section we use,  
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    (Equ.12)  

In the centre of mass system, the proton and deuteron momenta are equal and opposite 

and both equal in magnitude to mE2k , where m is the reduced mass and E is 
the sum of the proton and deuteron kinetic energies in the CoM system. For the low 
photon energies in question, i.e. not much more than the minimum to cause 
photodisintegration, the kinetic energy of the helium-3 nucleus is negligible (about 
0.1% of that of the photon). Thus, the energy of the photon released by proton capture 
is given accurately by E plus the difference of the binding energies of helium-3 and 
the deuteron, i.e. .MeV4956.52225.2718.7B Hence the factors which occur 
in Equs.11 and 12 are,     
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    (Equ.13)  

So Equs.11, 12, 13 give,    
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    (Equ.14)  

Thus, if we consider there to be a density of deuterons of 1 mole per cm3 (i.e. 
29N

D 10x02.6 m-3), then the number of capture reactions per m3 per second per 
proton is,    

Reaction Rate cap
29 v10x02.6

    

    (Equ.15)  

where v is the relative closing speed of the proton and deuteron. Thus Equ.15, 
together with Equ.14, suffice to find the reaction rate if we know the relative speed 
(v) of the reactants in the laboratory frame of reference, and we know the total kinetic 
energy (E) in the CoM frame. Unfortunately, for a gas of protons and deuterons in 
thermal equilibrium there is a continuous distribution of these variables. For the non-
relativistic energies of interest, the energies are given by the Maxwell distribution,      

de
2

d][P        (Equ.16)  

where kT/E  and the distribution applies to both the proton and the deuteron. We 
denote the reaction rate at temperature T by R[T]. Conversely, if all the protons had 
speed vp in the lab frame, and all the deuterons speed vD, and the two velocities were 
at an angle , the resulting reaction rate is denoted R[vp, vD, ]. If we know the latter 
we can find R[T] from, 
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where, 
kT2

vM 2
pp

p  and 
kT

vM

kT2

vM
2
Dp

2
DD

D . Because the random motions are 

isotropic, all solid angles are equally likely, hence the uniform probability density in 
cos . Now R[vp, vD, ] will be given by Equs.14, 15 provided we can find the lab 
frame relative speed (v) and the CoM system total energy (E) in terms of vp, vD and . 
In the (very good) approximation that the deuteron is twice the mass of the proton, it 
is simple to show that,   
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    (Equ.18)  

Thus, the reaction rate at temperature T can be found by numerically integrating 
Equ.17 using Equs.14, 15, 16 and 18. The results are compared with the reaction rates 
given by Hoffman et al in the Table below,  

Temperature (K) Reaction Rate, Equ.17

 

s-1 per mole/cm3 
Reaction Rate, Hoffman et al 

s-1 per mole/cm3 

107 0.001 - 
1.4 x 107 0.0053 0.0036(1) 

3 x 107 0.127 0.21 
5 x 107 0.71 1.10 

108 5.0 7.0 
3 x 108 59 65 
5 x 108 151 150 

109 461 390 
1.5 x 109 831 630 
2 x 109 1239 870 

       

          (1)
Unreliable extrapolation  

Although the agreement at individual temperatures is not always impressive, this is 
partly because the reaction rate is so sensitive to temperature. Overall the agreement is 
remarkably good given the simplicity of our treatment, as the following graph shows,  



   

6. Discussion of the Temperature Dependence of the Reaction Rate 
If we examine the temperature dependence of the predicted reaction rates given in the 
above table/graph (using Equ.17 rather than Hoffman, for definiteness) we see that 

fitting to the functional form Rate }E/bexp{ , where the mean energy is 
1.5kT, we get numerical values for b of about 0.385 at ~107 K, rising to ~0.82 at  
~4 x 108 K. It is important to realise that the reaction rate at a given temperature does 
not derive only from the energy dependence of the matrix element. The latter has a b 
parameter of ~0.405, and because it is squared in the expression for cross-section, 
would imply a reaction rate energy dependence with b ~ 0.81 if there were no other 
sources of energy dependence.   

In fact there are three other sources of temperature dependence. The first two are 
displayed in Equs.(14) and (15). Thus, if we consider low energies, E << B, then 
Equ.(14) has a factor of E3/2 in the denominator, in addition to the energy dependent 
matrix element. Euq.(15) introduces further energy dependence via the velocity 
factor. Ignoring the complication of  dependence, the velocity varies essentially as 

E. Hence, combining Equs(14) and (15) we have a net factor of 1/E.   

However, the third source of temperature dependence is the most important, namely 
the Maxwell distribution of energies at a given temperature. This is displayed 
explicitly in Equs.(16, 17, 18). In the numerical evaluation, above, we have correctly 
accounted for all three of these temperature dependencies. They are the reason why 
the fitted b parameter is not simply twice that for the matrix element. It is instructive 
to attempt an approximate analytic derivation of the temperature dependence of the 
reaction rate. From the above discussion, ignoring the complication of the 

 

dependence, and assuming the energy dependence of the matrix element can be 

Figure: p-D Capture Reaction Rate Calculated Here Compared With Hoffman et al
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approximated as }E2/bexp{ , we expect the temperature dependence of the 
reaction rate at temperature T to be proportional to,  

Reaction rate 
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    (Equ.19)  

where, y = E1 + E2 = E, and x = E1  E2. Note that the range of integration E1  [0, ] 
and E2  [0, ] maps into y  [0, ] and x  [-y, +y], since E1 = (x + y)/2 and  
E2 = (y 

 

x)/2. Also note that the parameter b in the above is twice that applying for 
the matrix element, and hence is ~0.81 for sufficiently small E. The second integral is 
just 2/y2 , so (19) becomes,    
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    (Equ.20)  

We can estimate (20) by expanding the exponent as a power series, noting that it 
attains a minimum when,     
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    (Equ.21)  

this being the energy which contributes most to the overall reaction rate. [NB: At 
lower energies the matrix element and hence the reaction rate reduces rapidly, 
whereas at higher energies the Maxwell distribution ensures that there are a rapidly 
reducing number of particles with such energies].  Thus,    
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where,  
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  (Equ.22b)  

Thus, (20) is approximated as,  
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    (Equ.24)  

The dominant dependence is the exponential, but from Equ.(22b) we see that this is 

not a E/exp  factor but has a different energy dependence in the exponent, 

namely 
3

1

3
2

3
2min

kT

b

2

3
f . If we equate Equ.(24) to an effective term of the form 

E/exp , assuming b = 0.81, then the energy dependent parameter  varies as 
follows,     

T (106 K) E = 1.5kT

 

(MeV) 
fmin 

dimensionless 
2

3

f

)kT(

e min
* 

 

MeV 

10 0.00129 17.27 0.0257 0.310 
14 0.00181 15.43 0.0975 0.312 
20 0.00259 13.69 0.325 0.313 
25 0.00323 12.72 0.6157 0.315 
30 0.00388 11.96 1.0 - 

      

     *Normalised by its value at T = 30 million K.  

Thus, the effective b parameter is ~0.31 for low temperatures, which compares with 
the numerical derivation above which implies that b is around 0.385  0.426 for 
temperatures of 10 to 30 million K. The agreement is reasonable if not especially 
impressive. The main point, however, is that the above considerations explain why the 
effective b differs markedly from twice the matrix element value for b , i.e. ~0.81. 
At higher temperatures the numerical derivation shows that b increases, but our 
estimate, above, would not then be expected to be accurate since the matrix element 
then ceases to vary in the assumed manner.       
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