Appendix A3 — Derivation of thep + D — *He Reaction Rate
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1. Introduction

We have noted in Chapters 13 and 14 that the crucial slowness of the reaction which
initiates stellar burning of hydrogen, i.e. p+p—> D+e" +v,, isduein part to the
need for the protons to penetrate the Coulomb barrier before they can react. This
being the case, we have queried (Chapter 14) why the second reaction, i.e.p+D —
®He + v, should not also be slow, since a Coulomb barrier needs to be penetrated in
this case also. Y et these two reactions differ in rate by about afactor of 10", In this
Appendix we derive the rate of the p + D — *He + v reaction from first principles. We
shall seethat it isindeed suppressed by the Coulomb barrier. Thisisthe reason for
this reaction rate reducing extremely steeply, effectively switching off, below
temperatures of ~10’K. We conclude that the 17 orders of magnitude differencein the
two reaction rates must actually be due entirely to the weakness of the weak nuclear
force, contrary to the impression given by many popular physics books.

2. TheContributing Matrix Elements

We are dealing with a system of two protons and one neutron. The ground state of
helium-3 will be an S-state. The two protons must therefore have anti-aligned spins,
by the exclusion principle, so the overall spin of *He must be ¥4, arising from the
neutron spin. In the free state, the two proton spins may alternatively be aligned, in
which case, to be consistent with the exclusion principle, they must be in an odd L
state.

Following the derivation of the proton-neutron matrix elements (Appendix A2) we
consider two interaction Hamiltonians: the electric dipole interaction,

H, = 2eE,rcos6 ; and the magnetic dipole interaction, H, = B, - Mag, where Mag is
the magnetic moment operator and Ep and By are the electric and magnetic fields due

to the gammaray photon. [In the case of photodisintegration, thisis the incident
radiation. In the case of proton capture, thisis the emitted photon].

We firstly consider the magnetic dipole interaction. Recall from Appendix 2 that the
magnetic dipole matrix element was non-zero for the n-p system only when the free
state was chosen to be a spin singlet state, in contrast to the bound state (deuteron)
which isaspin triplet. The spin dependence of the strong nuclear potential then leads
to anon-zero matrix element. For the ppn system, considering just S-wave (L = 0)
states, there is just one possible total spin state, spin %2, in which the two protons form
asinglet sub-state. The matrix element between two such states of differing energy is
zero, by orthogonality. Unlike the n-p system we do not have the choice between two
different spin states — with differing nuclear potentials. On the other hand, if we
consider the free state to be a P-wave (L = 1), and the spin state to be */,*, then the
two states will be eigenfunctions corresponding to different (spin dependent) nuclear
potentials. However, the matrix element is again zero due to the angular integral (i.e.
S and P states are always orthogonal, irrespective of the radial dependence). We
conclude that the magnetic dipole matrix element isidentically zero (at least in first

1 NB: The matrix element of the operator M ag between spine ¥2 and spin 3/2 states can be non-zero as
long as the two states have the same azimuthal spin component.



order perturbation theory), essentially as a consequence of the exclusion principle.
Since the magnetic term is dominant in the n-p system (accounting for 99+% of the
reactions below ~10°K , see Appendix 2) we can therefore expect thep + D — *He +y
reaction rate to be much slower than the capture of protons by neutrons (even before
accounting for the Coulomb barrier).

The electric dipole matrix element is non-zero, however. In view of the presence of
the cosb factor in the interaction Hamiltonian, the only non-zero matrix element will
be that in which the free state is a P-wave. The two proton spins must then be aligned,
by the exclusion principle. According to whether the neutron spin is aligned or anti-
aligned with the proton spins, the total spin will be */, or ¥ However, because the
bound state (*He) is spin ¥, and because the electric dipole interaction does not affect
the spin, the spin %, free state will give a zero matrix element. Consequently, the only
non-zero matrix element contributing in first order perturbation theory is,

matrix element = < spin®/,, S(bound)|eE,r cosé|spin® /,, P(free) >  (Equ.1)

noting that the factor of ‘r’ in the interaction Hamiltonian is what prevents
orthogonality making the radial integration zero. Note that Equ.1 is the matrix
element factor per proton, i.e. acharge of just ‘e’ has been assumed. Since there are
two protons, this matrix element is duplicated for the other proton.

The fact that the spin state is the same for the free state as for the bound state is
fortunate. Thisis because we do not yet know what the effective nuclear potential is
for *He. We can, however, determine the effective potential for the spin ¥ state (or,
rather, we can determine possible pairs of Vo and a) from the measured binding
energy of ®He. This same potential & range combination will apply also for the free
state because it is also spin ¥%. Had the spin ¥/, free state been involved, we would
have had a difficulty determining the effective potential and range for this spin state.

3. Effective Nuclear Potential For *He
Theradial Schrodinger equation is,

2 2
Bl—az —h—-M—V(r) + E}u(r) =0 where, y = d (Equ.2)
m r r

Now, to write a Schrodinger equation in just one (radial) coordinate, we must be
assuming a two-body problem. Strictly, we are now dealing with a three-body
problem, two protons and a neutron. However, we intend to treat the deuteron asif it
were asingle particle in its own right. The two-body system in question is therefore
the p-D system. Since these two particles are of mass My, and 2M, (approximately),
the reduced mass miisjust (/3)M,.

A positive potential is repulsive, so the centrifugal force is seen to be repulsive, asit
should be. In the simple square-well model for the nuclear force we have,

V(r)=-V, for r<a (Equ.33)



v(r) =

=2
@-GT forr>a (Equ.3b)

For the deuteron, Z = 1 and the Coulomb potential does not contribute. For helium,
Z = 2 and the Coulomb potential is €% /r. We have €% =1.44 MeVim.

The known binding energy of helium-3isB = 7.7180MeV. We have numerically
integrated the Schrodinger equation (EXCEL macro NSW14) to find combinations of
Vo and awhich reproduce this binding energy to at least 4 decimal places. These are
given in the Table below. The Table also shows the values of —aco. cot(ao) and aj,
where (78)° = 2mBand (i)’ = 2m(V, — B) . These two quantities would be equal if
it were not for the influence of the Coulomb potential. It can be seen that they are
quite close, which shows that the Coulomb potential does not have a dramatic effect
on the binding energy, though it does have a noticeabl e effect. The numerical
integration applied the boundary condition near the origin at r = 0.001 fm and used an
integration step size (Ar) of 0.01 fm. Sensitivity to a change to a step size (Ar) of
0.0025 fm caused a change in the required V to reproduce the required binding
energy of only 0.08%.

Effective Nuclear Potential And Range For 3He

a (fm) Vo (MeV) — ao.cot(an) ap
4 17.99 2.0287 1.9891
3 24.231
2 40.14 1.0294 0.9946
15 60.498
1.2 85.247 0.6278 0.5968
1.0 114.364
0.8 166.216 0.4259 0.3978

Note that there is no simple combination of V and a (e.g. aVo) which isinvariant.
There was no other bound state of helium-3 for the above potentials (i.e. no excited
states of helium-3, which | believeisin fact the case).

If the above prescription for the nuclear 3-body problem were correct, we would
expect to be able to derive the binding energy of tritium (pnn) from the same potential
& range combinations just by switching off the Coulomb potential. The actual binding
energy of tritium is 8.4818 MeV, some 0.7638 MeV larger than that of helium-3. The
sign of this binding energy difference is as we would expect, being due to the
repulsive nature of the Coulomb force causing helium-3 to be less tightly bound.
Running NSW1a with the Coulomb potential switched off, and for nuclear force
ranges of 4, 2, 1 and 0.6 fm, gives increases in binding energy of 0.056, 0.207, 0.527
and 0.676 MeV respectively. We see that, for the shortest ranges we are indeed
approaching the correct binding energy difference (0.7638 MeV). The lesson from
this observation is that for nuclel larger than the deuteron, the absolute size (a) is
significant in determining nuclear properties.



4. Numerical Evaluation Of Matrix Elements

In the case of the n-p system we used the zero-range approximation to find algebraic
expressions for the matrix elements (see Appendix 2). This was possible because we
have simple, exact, analytic solutions for the wavefunctions in the absence of a
Coulomb potential. Unfortunately, the presence of the Coulomb potential makes it
preferable to resort to numerical solutions. The EXCEL macro NSW1b has been used.
Before proceeding to the p + D reaction, we carry out checks on the numerical
procedure by reproducing the analytical results for the n-p system.

4.1 Check of Program NSW1b Against n-p Matrix Elements

For application to the p-D system we shall only need the electric dipole matrix
element between the bound S state and a free P state, both of the same spin state
(hence the same nuclear potential). However, for completeness, the program NSW1b
is also checked here for the case of the magnetic dipole matrix element between two S
states of different spin (i.e. different nuclear potentials). We start with the | atter.

41.1 Check of <* S(bound)‘ls(free) >For Then-p Potentials

Recall first of al that matrix elements involving free states are defined only if a
normalisation volume is specified. The matrix element has been determined in
Appendix A2 to be,

<* S(bound)|"S(free) >\ = 2( kE ; E 2] /(1+ §EE)r (Equ.3)

where, (1B)* = 2mB, B is the deuteron binding energy (2.2245MeV), (hﬁ)z = 2mB,
and aso B =1/*a, where *aisthe n-p singlet scattering length, i.e. —23.69fm. Hence,
B =-0.04221fm™, and B = +0.07415MeV . E isthe total energy of the two nucleons

in the cms system (the eigenvalue of the Schrodinger equation), and (7k)* = 2mE.

Finally, rmax isthe radius of the normalisation volume. The numerical value of the
matrix element is meaningless without ry being specified.

It should be recalled that Equ.3 was derived on the assumption that k(r,., —a) = nn

for some integer n. Numerical evaluation for combinations of energy and ryax not
obeying this relationship may be expected to differ from Equ.(3), i.e Equ.(3) will not
be correct in such cases.

It should also be recalled that Equ.3 was derived using the zero-range approximation.
We may expect, therefore, that numerical evaluations will agree better with Equ.3 if
combinations of Vo and aare employed in which ais small. Because of thiswe have
used potentials with two different ranges, as follows,

Effective n-p Nuclear Potentials

Singlet Triplet
Vo (MeV) a (fm) Vo (MeV) a (fm) B
experimental 16.1 2.4 35.08 2.054 2.20759
reduced ‘&’ 99.2 1.0 123.27 1.0 2.19328




Thefirst line gives values (from Evans) derived from experimental data, and hence
are best estimates. The second line gives equivalent potentials with the range reduced
to 1 fm. For the triplet state, Vo wasfirst found from a= 1fm using the exact solution
for asquare well potential to reproduce the binding energy of 2.2245MeV. The last
column of the Table gives the binding energies derived from the program NSW1afor
the stated triplet potentials. They are close enough to the true value for our purposes.

Note that there is no bound singlet state and Bis not a bindi ng energy. Finally, the
singlet potential for a= 1 fm was found using the energy quantisation expression for a

square well, i.e. ad cot(ad) = —ap , where (hd)* = 2m(V, — B) and (hﬁ)z = 2mB,
whilst noting that thisis not a bound state because E IS negative.

The following Table compares the numerical results of NSW1b with Equ.3 for thea=
1 fm potentials. Equ.3 is evaluated using the binding energy compatible with the
program, i.e. B = 2.19328MeV. Results are presented for rma = 57.32fm. We have not
respected the requirement Kk(r,,, —a) = nr, so this may introduce some of the
differences observed. For the lowest energies calculated, the wavelength of the free
state (2n/k) isfar greater than rma, and this would introduce serious error in the
numerical resultsif special precautions were not taken. For the low energy cases (in
italicsin the Table) NSW1b applies a correction to the normalisation of the free state.
Detallsare given in anote at the end of this Appendix. Thiswas never added.

Matrix Elements <® S(bound)‘ls(free) > For n-p System
(rmax = 57.32fm, No Coulomb Potential, Nuclear Potentials with a= 1fm

E (MeV) M.E. (from NSW1b) M.E. (Equ.3)
0.0015625 0.0921 0.0937
0.003125 0.1288 0.1311
0.00625 0.1783 0.1815
0.0125 0.2422 0.2465
0.025 0.3185 0.3241
0.05 0.3986 0.4050
0.074 0.4462
0.125 0.4879 0.4892
0.25 0.5181 0.5146
0.5 0.5008 0.4960
1.0 0.4422 0.4326
2.0 0.3399 0.3352
4.0 0.2316 0.2292
8.0 0.1414 0.1398
16.0 0.0782 0.0785
32.0 0.0417 0.0418
64.0 0.0210 0.0216
128.0 0.0110

Note that at small energies the matrix element drops to zero proportional to VE. At
large energies the matrix element also drops to zero, proportional to 1/E. Graphical
plots of these resultsfollow...
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41.2 Check of <* S(bound)|rcose‘3P(free) >For The n-p Potentials

Appendix A2 has aso derived an analytic expression for this electric dipole matrix
element in the zero-range approximation, namely,

LS B(lij%EA
N Iy [ e

Numerica and graphical results from the numerical integration program NSW1b are
compared with Equ.4 asfollows, for VO = 123.27MeV and a= 1fm,

<* S(bound)|r cose‘ *P(free) >




Matrix Elements <® S(bound)|rcose‘3P(free) > For n-p System
(rmax = 49.6fm, No Coulomb Potential, Nuclear Potentials with a= 1fm)

E (MeV) M.E. (from NSW1b) M.E. (Equ.4)
0.00625 0.00946 0.0092
0.0125 0.01882 0.0183
0.025 0.03723 0.0362
0.05 0.0707
0.1 0.1395 0.1353
0.2 0.2486
0.3 0.3549 0.3435
0.5 0.5071 0.4908
1 0.7257 0.6981
2 0.8399 0.8098
2.19328 0.8586 0.8115
2.5 0.8496 0.8081
3 0.8046 0.7920
5 0.7134 0.6880
10 0.5025 0.4789
20 0.3004 0.2891
40 0.1640 0.1600
100 0.06025 0.0682
200 0.0348

Figure: Blectric Dipole S-P Matrix Eement for n-p System: Check of Numerical
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Figure: Blectric Dipole S-P Matrix Hement for n-p System: Check of Numerical
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The matrix element again fals off as 1/E at large energy, but at small energies the
drop-off is less steep than for the S-S matrix element, falling proportionaly to E.

4.1.3 Sengitivity of n-p Matrix Elementsto Coulomb Potential

To gain an impression for the sensitivity of a matrix element to switching on the
Coulomb potential, we consider the n-p system as if a Coulomb potential applied.
This may be thought of as being what the p-p matrix el ements would be if the
exclusion principle did not forbid their existence.

4131 <° S(bound)‘ls(free) >With Coulomb Potential

For comparison, we use the same singlet and triplet potentialsasin Section 4.1.1,
namely Vo =99.2 MeV, Vo = 123.27 MeV respectively, with a= 1 fm. The Coulomb
potential is switched on only for r > aand is V(r) = €° /r, where €’ = 1.44MeV .fm.
The switching-on of the Coulomb potential changes the bound state binding energy
from 2.19328 MeV to 1.68504 MeV. [I found it surprising, initially, that the Coulomb
potential causes the binding energy to decrease rather than increase. This was because
the Coulomb potential causes the apparent depth of the potential well to increase from
Voto Vo + V., where V, = €°/a. However, it must be remembered that the bulk of

the wavefunction lies outside the region of the nuclear potential, i.e. it isfar more
likely to find the nucleons spaced by r > a. The effective force of attractionis
therefore the nuclear force minus the repulsive Coulomb potential. Clearly this will
weaken the binding].

In the Table below we compare the numerical results from program NSW1b with the
analytic result of Equ.(3). The latter does not account for the Coulomb potential.
However, we use the shifted binding energy (B = 1.68504 MeV) in Equ.(3). This
roughly accounts for the Coulomb effect on the bound state in Equ.(3), but thereisno
such alowance for the free state. In the numerical results from NSW1b we have used
I'max = 57.32 fm. However, for small energies, NSW1b normalises the free states by
using an extended radial integration, up to aradius which is given by,



e’ nh
Voom = Nnorm —t Equ.5
{E \/ZmE} (Equs)

where Nom IS Some positive integer, avalue of 4 having been generally used here.
Although NSW1b uses thisincreased integration range, the resulting normalisation
constant is rescaled as if the normalisation had been to radius rmay, i.€e. the
wavefunction ismultiplied by 4/t / e - HENCE, rmax May be deployed heresfter as

if it had been the normalisation radius, and the matrix elements etc for small energies
can be compared directly with those at higher energies.

E (MeV) Equ.(3): Coulomb NSW1b With
Barrier Not Present Coulomb Barrier
5 0.1782 0.2159
2 0.3199 0.3892
1 0.4314 0.4978
0.5 0.5127 0.5025
0.25 0.5449 0.3839
0.125 0.5254 0.231
0.05 0.4391 0.0923
0.025 0.3525 0.0385
0.0125 0.2686 0.0126
0.00625 0.1979 0.00283
0.003125 0.1430 0.000369
0.0015 0.1002 1.87E-5
0.00075 0.0713 3.8E-7
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We have already seen that the matrix element without a Coulomb barrier reduces to
zero at low energies proportionally to VE. The above logarithmic plot shows that at

the lowest energies, the matrix element with the Coulomb barrier varies as e vE
The graph shows that b — 0.369 VMeV. This energy dependence can be derived

simply as follows. Firstly, we note that the bound state wavefunction is little changed
by the presence of the Coulomb potential:-
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In contrast, the free state wavefunction is markedly reduced by the Coulomb potential.
(The aboveillustration is for afree state energy of E = 0.05 MeV).

The reason for the marked change in the free state wavefunction is simply that, with
the Coulomb potential switched on, the free state has negative kinetic energy (i.e. has
exponential radial dependence rather than oscillatory) for r < 28.8 fm. Thisleadsto
the free state wavefunction being far smaller in the region where the bound state
wavefunction is significant (i.e. r < 20 fm). In the above example with E = 0.05 MeV,
itissmaller by afactor of ~4. It is simply this which results in the matrix element
being smaller by a similar factor.

The above graph also illustrates clearly that most of the contribution to the matrix
element comes from outside the range of the nuclear forces (i.e. fromr >a=1fmin
this case).

Having made this observation, we now realise that energy dependence of the matrix
element must derive from that of the free state in the region r < 20 fm, and hence
depend essential on ‘how much’ of the free state manages to “penetrate the Coulomb
barrier” from outside. Note, though, that this does not mean “how much of the free
state existsin the interior region r < &’. We have seen that very little does, at any
energy, and indeed thisis the basis of the zero-range approximation. It is actually the
size of the free wavefunction within the region where the Coulomb potentia is

significant (a<r < r. = €°/E) that matters. Thisis the region within which the free
state has negative kinetic energy, the exponential decay length being (the reciprocal
of) k =4/2m(V(r) - E) / i, noting that this varies with ‘r’. Roughly speaking, we may
expect the magnitude of the wavefunction to diminish fromr = rg to r = aby afactor

e
— | xdr

of e = . Theintegra may be evaluated exactly to give afactor,

(Equ.6)

~5 =2

X = expl— = “Zm-i[e—lsinze} where, 0= tan” | ~e _1, v, = &
no JEL 2 E a

For energies sufficiently small compared with V¢, 6 — ©t/2 and hencethesintermis
zero and we Qet,

=2 |
X - exp{— b/ \/E} where, b= % =0.351+/MeV (for “p-p”) (Equ.7)

hence deriving the functional dependence on energy seen in the numerical results, and
also confirming that the numerical value for b given above is very close to the
expected value. This validates the numerical procedure of program NSW1b.

4.1.3.2 <* S(bound)|r cos6|* P(free) > With Coulomb Potential

Since the p-D cross section will require the S(spin %2)-P(spin ¥2) matrix element, we
also examine the sensitivity of the n-p system matrix element to turning on the
Coulomb potential. [ The same remarks apply asin Section 4.1.3.1, namely that this



does not correspond to any actual physical process]. In this case we use the best
estimate triplet potential (for both free and bound states), i.e. Vo = 35.08 MeV and
a=2.054 fm and rma = 57.32 fm. Program NSW1a gives the bound state binding
energy when the Coulomb potential is switched on to be 1.94702 MeV. The
comparison between the numerical results of program NSW1b, with the Coulomb
potential on, and Equ.4 (which does not account for the Coulomb barrier — although
we use the amended binding energy) is given by the following Table and graphs,

E (MeV) Equ.(3): Coulomb NSW1b With
Barrier Not Present Coulomb Barrier

10 0.4824 0.5438
75 0.5786 0.6516

5 0.7133 0.7671

3 0.8440 0.8988
2.2 0.8808 0.8930

1 0.7928 0.7532
0.5 0.5749 0.5058
0.25 0.3566 0.2820
0.1 0.1643 0.1049
0.05 0.08632 0.04202
0.025 0.04426 0.01396
0.0125 0.02241 0.003865
0.00625 0.01128 0.000756
0.003125 0.005658 9.28E-5
0.0015 0.002720 4.46E-6
0.00075 0.001361 8.64E-8

Again it can be seen , from the second graph below, that the matrix element varies

with energy, at sufficiently small energies, proportionally to e

H'VE and the numerical

results give b ~ 0.369 from the last two data points, in good agreement with the
theoretical estimate derived above.
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4.2 Derivation of the p-D Matrix Element

Having established the technique, NSW1b is now used together with the effective
nuclear potentials of Section 3 to evaluate the matrix element for the p-D system. We
choose (arbitrarily) the a= 2 fm potential with Vo = 40.14 MeV. The Table below

gives the matrix element (in fm) as a function of energy. Equ.4 is also shown for

comparison, using the helium-3 binding energy (7.718 MeV). The reduced massism
= 625.515 MeV, and the reference normalisation radiusis rna = 57.32 fm, as used
above. (Note that the actual normalisation is carried out over a greater radius for low

energy free states, see above discussion).

Values of < spin* /,,S(bound)|r cose‘spin1 /,,P(free) > for the p-D System (fm)

E (MeV) matrix element (fm) matrix element (fm)
from NSW1b from Equ.4
(with Coulomb barrier) (no Coulomb barrier)
100 0.003202 0.07776
60 0.02668 0.1181
40 0.07380 0.1585
20 0.2619 0.2349
10 0.4301 0.2874
7.71779 (B) 0.4361 0.2923
5 0.3959 0.2789
2 0.2455 0.1911
1 0.1362 0.1187
0.72 (V) 0.09995 0.09124
0.5 0.06915 0.06880
0.25 0.03229 0.03553
0.1 0.01036 0.01476
0.05 0.003757 0.007477
0.02 0.00075 0.00301
0.01 0.000164 0.001511
0.005 2.32E-5 0.000756
0.002 5.99E-7 0.000303
0.001 1.16E-8 0.0001511
0.0005 4.73E-11 0.000076
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The graphs show that there is a band of energies (roughly 12 to 25 MeV) where the
n-p and p-D matrix elements are of similar magnitude, but that for other energies the
p-D matrix element tends to be much smaller. Its largest value is about half that for
n-p. At sufficiently large and sufficiently small energies, the p-D matrix element is
orders of magnitude smaller than that for n-p. At low energies, thisisthe result of the
Coulomb barrier. The last pair of data points gives avalue b = 0.420 for the parameter

in the energy factor e™ ‘E This compares with the theoretical estimate of 0.405 from
Equ.7 (recalling that p-D has alarger reduced mass than n-p). Hence, the low energy
behaviour conforms to expectation.



The reason for the steeper reduction in the matrix element at high energiesis unclear.

5. Calculation of thep + D — *He + y Reaction Rate at a Given Temperature
Following Appendix A2, the reaction rate for the photodisintegration reaction *He + y
—>p+Dis,

W = 2(%)( m;;galz )(eEO)2‘< S(bound)|r cos6|P(free) >‘2 (Equ.8)
TU

and w is the probability of disintegration per second per helium-3 nucleus. The second
term in bracketsin Equ.8 is the density of final states. For the numerical values of the
matrix element given above we must use, for consistency, rms = 57.32 fm.

The leading factor of two accounts for the fact that the photon may couple to either of
the two protons, and hence doubles the reaction rate. [ There is a problem of principle
here. If the helium-3 isregarded as a particle of charge 2e, then the matrix element
involves (2eEo)?, and this results in double the reaction rate given by Equ.8. Why isit
not correct to do the calculation this way? We note that at the photon energies
involved, i.e. ~5.5MeV or above, the photon wavelength is ~220fm, and so the photon
cannot resolve the two protons. It may be that Equ.8 iswrong and should be
multiplied by 2].

Recall from Appendix A2 that the cross-section, photon flux and fine structure
constant are given by,

2E2 2
C4e = ﬂN and J'=—"% and a= CHo® (Equ.9)
J, hoCp, Anh
where 7o isthe photon energy. Hence, Equ.8 gives,
mor, 2
Cye = 8noc7”‘ax‘< S(bound)|r cos6|P(free) >| (Equ.10)

We noted in Appendix A2 that our derivation of the electric dipole cross-section was
too large by a mysterious factor of 4 which we failed to trace. Anticipating that the
same error occurs here, we re-write Equ.10 as,

Gy = Zna%k S(bound)|r cos6|P(free) >‘2 (Equ.10)

Inserting the values of the constants into Equ.10 gives,

Cye = 8.32(%}‘< S(bound)|r cos6|P(free) >‘2 (Equ.11)



It isthe matrix element in Equ.11 which carries the dimensions. Thus if the matrix
element is evaluated in fm (as in the above numerical data) the cross-section isin fm?
= 0.01 barn. To calculate the capture cross-section we use,

2
c(p+ D —° He+ y) _ number of 3He+yspinstat&s{&} _g{&

2
3 - . } (Equ.12)
G( He+y—>p+ D) number of p+ D spinstates | p, 3| P,

In the centre of mass system, the proton and deuteron momenta are equal and opposite

and both equal in magnitude to 7k = +v2mE , where m isthe reduced massand E is
the sum of the proton and deuteron kinetic energies in the CoM system. For the low
photon energies in question, i.e. not much more than the minimum to cause
photodisintegration, the kinetic energy of the helium-3 nucleus is negligible (about
0.1% of that of the photon). Thus, the energy of the photon released by proton capture
isgiven accurately by E plus the difference of the binding energies of helium-3 and
the deuteron, i.e. AB =7.718 - 2.2225 = 5.4956M eV . Hence the factors which occur
in Equs.11 and 12 are,

P, o E+AB

p_p =" —m (Equ.13)
So Equs.11, 12, 13 give,
E+AB ) )
G = 5.5 m] |< S(bound)|r cos6|P(free) >| (Equ.14)

Thus, if we consider there to be adensity of deuterons of 1 mole per cm® (i.e.
pY = 6.02x10% m®), then the number of capture reactions per m® per second per
proton s,

Reaction Rate= 6.02x10*vo (Equ.15)

where v isthe relative closing speed of the proton and deuteron. Thus Equ.15,
together with Equ.14, suffice to find the reaction rate if we know the relative speed
(v) of the reactants in the laboratory frame of reference, and we know the total kinetic
energy (E) inthe CoM frame. Unfortunately, for agas of protons and deuteronsin
thermal equilibrium there is a continuous distribution of these variables. For the non-
relativistic energies of interest, the energies are given by the Maxwell distribution,

Fe]lde = %\/Ee_eds (Equ.16)

where € = E/KT and the distribution applies to both the proton and the deuteron. We
denote the reaction rate at temperature T by R[T]. Conversely, if al the protons had
speed v, in the lab frame, and all the deuterons speed vp, and the two velocities were
at an angle 6, the resulting reaction rate is denoted R[vp, Vp, 0]. If we know the latter
we can find R[T] from,



i j 4©0s0) Rrv, vy, 0] (Equ.17)

R[T] = TP[SP]dSPT He,]de

0

2 2 2
where, ¢, _Mpvy and ¢, = MoV _ My
2kT 2kT KT
isotropic, all solid angles are equally likely, hence the uniform probability density in
cost. Now R[vp, Vp, 6] will be given by Equs.14, 15 provided we can find the lab
frame relative speed (v) and the CoM system total energy (E) in terms of vy, vp and 6.
In the (very good) approximation that the deuteron is twice the mass of the proton, it

issimple to show that,

. Because the random motions are

vi=vi+vp-2v,v,cos0 and E= %M o2 (Equ.18)

Thus, the reaction rate at temperature T can be found by numerically integrating
Equ.17 using Equs.14, 15, 16 and 18. The results are compared with the reaction rates
given by Hoffman et al in the Table below,

Temperature (K) | Reaction Rate, Equ.17 | Reaction Rate, Hoffman et al
s* per mole/cm® s per mole/cm?®
10’ 0.001 -
1.4 x 10’ 0.0053 0.0036Y
3x 10’ 0.127 0.21
5x 10’ 0.71 1.10
10° 5.0 7.0
3x 10° 59 65
5x 108 151 150
10° 461 390
1.5x 10° 831 630
2x 10° 1239 870

(1)Unreliableextrapolation

Although the agreement at individual temperaturesis not alwaysimpressive, thisis
partly because the reaction rate is so sensitive to temperature. Overall the agreement is
remarkably good given the smplicity of our treatment, as the following graph shows,
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6. Discussion of the Temperature Dependence of the Reaction Rate
If we examine the temperature dependence of the predicted reaction rates given in the
above table/graph (using Equ.17 rather than Hoffman, for definiteness) we see that

fitting to the functional form Rate « exp{—b/+/< E >} , where the mean energy is

1.5kT, we get numerical values for b of about 0.385 at ~10” K, rising to ~0.82 at

~4 x 108 K. It isimportant to realise that the reaction rate at a given temperature does
not derive only from the energy dependence of the matrix element. The latter hasa ‘b’
parameter of ~0.405, and because it is squared in the expression for cross-section,
would imply areaction rate energy dependence with b ~ 0.81 if there were no other
sources of energy dependence.

In fact there are three other sources of temperature dependence. The first two are
displayed in Equs.(14) and (15). Thus, if we consider low energies, E << B, then
Equ.(14) has afactor of E¥? in the denominator, in addition to the energy dependent
matrix element. Eug.(15) introduces further energy dependence viathe velocity
factor. Ignoring the complication of 6 dependence, the velocity varies essentially as
VE. Hence, combining Equs(14) and (15) we have a net factor of 1/E.

However, the third source of temperature dependence is the most important, namely
the Maxwell distribution of energies at a given temperature. Thisis displayed
explicitly in Equs.(16, 17, 18). In the numerical evaluation, above, we have correctly
accounted for all three of these temperature dependencies. They are the reason why
thefitted ‘b’ parameter is not simply twice that for the matrix element. It isinstructive
to attempt an approximate analytic derivation of the temperature dependence of the
reaction rate. From the above discussion, ignoring the complication of the 6
dependence, and assuming the energy dependence of the matrix element can be




approximated as o exp{—b/ 2+/E} , we expect the temperature dependence of the
reaction rate at temperature T to be proportional to,

tTdEdE, EE, b E, +E,
exp— +
20 (KT)® E +E,

Reaction rate oc .[ J'
JE, +E, kT

p}
\/_ ll .[w/ x%dx (Equ.19)

m{ (KT)?

where, y = E; + E; = E, and x = E; — E,. Note that the range of integration E; € [0, «]
and E; € [0, o] mapsintoy € [0, «o] and x € [-y, +Y], Since E; = (x + y)/2 and

E, = (y — x)/2. Also note that the parameter ‘b’ in the above is twice that applying for
the matrix element, and hence is ~0.81 for sufficiently small E. The second integral is
just my®/2, so (19) becomes,

b vy
Reacti at — Equ.20
eaction r eoc_[ T)3y Xp {\/_ kT} (Equ.20)

We can estimate (20) by expanding the exponent as a power series, noting that it
attains a minimum when,

Y, = E, = (0.5bkT)? (Equ.21)

this being the energy which contributes most to the overall reaction rate. [NB: At
lower energies the matrix element and hence the reaction rate reduces rapidly,
whereas at higher energies the Maxwell distribution ensures that there are arapidly
reducing number of particles with such energies]. Thus,

b .y
fly)=—=+-Z==~f_,, +05f;(y—-y,) +.... Equ.223
)= i = o #0503y =Y + (Equ.22a)
3 b’ . 3 s
where, fin =—-- and fl=—by, "2 (Equ.22b)
2% (kT)% 4

Thus, (20) is approximated as,

Yo

Reaction rateoc(k_l_ jexp—{O 5f Sy —Yy,)*}dy (Equ.23)
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(Equ.24)

The dominant dependence is the exponential, but from Equ.(22b) we see that thisis
not a exp— B/ JE factor but has a different energy dependence in the exponent,

%
namely f . = 3. b— If we equate Equ.(24) to an effective term of the form
2% (kT)%
exp— B/\/E , assuming b = 0.81, then the energy dependent parameter 3 varies as
follows,
T (10°K) | E=15kT frnin efm B
MeV dimensionless
( ) KT) 3 \MeV
10 0.00129 17.27 0.0257 0.310
14 0.00181 15.43 0.0975 0.312
20 0.00259 13.69 0.325 0.313
25 0.00323 12.72 0.6157 0.315
30 0.00388 11.96 1.0 -

"Normalised by itsvalue at T = 30 million K.

Thus, the effective ‘b’ parameter is ~0.31 for low temperatures, which compares with
the numerical derivation above which impliesthat ‘b’ is around 0.385 — 0.426 for
temperatures of 10 to 30 million K. The agreement is reasonable if not especially
impressive. The main point, however, is that the above considerations explain why the
effective ‘b’ differs markedly from twice the matrix element value for ‘b’, i.e. ~0.81.
At higher temperatures the numerical derivation shows that ‘b’ increases, but our
estimate, above, would not then be expected to be accurate since the matrix element

then ceases to vary in the assumed manner.
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