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Appendix A2 - Derivation of the Neutron-Proton Capture Cross-
Sectionsn ThisUniverse

1. Introduction

In this Appendix we derive the cross-section for neutron capture on a proton (or vice-
versa) and the closely related cross-section for photodisintegration of a deuteron into a
neutron and a proton. These reactions may be written p+ n <> D + y. The derivations

are carried out so as to demonstrate that the resulting formul ae are equally applicable
in an alternative universe in which the strong nuclear coupling constant, gs, has a
different magnitude.

The method is based on evaluating explicitly the relevant Schrodinger wavefunctions,
for both free and bound states. Matrix elements of appropriate interaction
Hamiltonians are cal culated between such states. Fermi’s Golden Rule is then used to
trandate the matrix element into a cross-section. Cross-sections are derived for both a
magnetic dipole interaction, in which the magnetic field of a photon couples with the
magnetic moment of a deuteron, and also for an electric dipole interaction, in which
the electric field of the photon couples with the charge of the proton.

The resulting cross-sections are compared with standard formulae from the literature.
Numerical results are also given. The magnetic dipole cross-section is generally
dominant.

The effect of achangein the strength of the nuclear force is manifest in the cross-
section equations via the deuteron binding energy, B. Some caution needs to be
exercised when employing these formulae since, if gs isincreased sufficiently (that is,
by more than ~10%), the deuteron will have a stable singlet state as well as the usual
triplet state (as shown in the Critique of the Cosmic Coincidences, Chapter 9B).
Hence, the cross-sections associated with the singlet deuteron state would also be
required for such hypothetical universes. The total capture cross section in these
universes, for unpolarised nucleons, would be the sum of the singlet and triplet cross-
sections.

In cases for which gs isincreased sufficiently (namely by more than ~10%), the
proton-proton capture cross section can be evaluated using essentially the same
methods, as can the diproton photodisintegration cross-section. Thiswill be dealt with
in Appendix A4. By way of apreview, it will be shown in Appendix A4 that, because
we are dealing with identical particlesin this case, the p-p capture cross-section is
many orders of magnitude less than that for n-p capture. This is because the dominant
contribution to n-p capture, viathe coupling of the magnetic field to the spin, is zero
for identical particles. Moreover, even the far smaller electric dipole contribution to
n-p capture is zero to first order in perturbation theory for the p-p system. Hence, p-p
capture proceeds only via a quadrupol e interaction, which is much weaker than the
dipole interactions. The demonstration that the diproton production rateis slow is our
ultimate objective. The present Appendix serves primarily as a confirmation that our
methodology provides reliable resultsin this universe.
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2. Then-p System: The Schrodinger Solutionsand Their Properties

The cross sections will depend upon matrix elements between wavefunctions
representing theinitial and final states of the two nucleons. We shall be concerned
exclusively with non-relativistic nucleons of just afew MeV energy or less. We shall
thus use the Schrodinger equation with a square-well nuclear potential, depth Vo and
radial width ‘a’. For the n-p system there is no Coulomb interaction, so the
Schrodinger equation is simply,

h2
{—%VZJFV}V:EW, where V=V, forr<a, elseV=0 (1)

In Equ.(1), the wavefunction (F) represents a neutron-proton pair, with T being the
relative position vector, and mistheir reduced mass, i.e. m=M M /(M +M ).

The energy E isthetotal energy of the two nucleons (excluding their rest mass) in the
centre of mass system, i.e. twice the energy of each nucleon (in the approximation
that M, =M ).

We shall need only bound S states and free S and P states. In the actual universe, the
only bound deuteron state isindeed the S state. When we consider a stronger nuclear
force, the binding energy of thistriplet S state will increase. If it isincreased enough,
the first new bound state to appear will be the singlet S state. It can be shown that the
triplet P (L = 1) state does not arise until the nuclear force is considerably stronger
than that necessary to bind the singlet S state. An even greater nuclear forceis
required to bind the singlet P state. Thus, as far as bound states are concerned, we are
only interested in S states.

However, afree neutron/proton pair can combine to form a deuteron from an initial S
or P state. Conversely, a deuteron can photodisintegrate into a free neutron-proton
pair in either an S or a P state. Thus, we need to examine both the S and P states of
free nucleons.

2.1 Neutron-Proton S States

2.1.1 Bound Neutron-Proton S States
The relevant solution to Equ.(1) may be shown by substitution to be,

\uzai%, p; =ar, ao=.2m(\V,-B)/k, forr<a ()]
Pi
—Pe

\p:aee . Pe=PBr, PB=+v2mB/h, forr>a 3

e

where B isthe binding energy (i.e. this solution has energy eigenvalue E = -B, so that
E <0 but B > 0). The coefficients oo and 3 are defined so asto be real. The subscripts

i and ¢ represent ‘inside’ and ‘outside’ in obvious fashion. Note that the functions
appearing in Equs.(1,2) are the spherical Bessel function of order zeroj,(p;) and the
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associated Hankel function of the first kind, h$’ (ip.) . The Neumann function ng is

excluded from the interior solution by the requirement that the wavefunction be finite
at the origin. Similarly, the Hankel function of the second kind is excluded from the
exterior solution since it involves a positive exponent, and hence is not normalisable.

The coefficients g and a, appearing in Equs.(2,3) are found, together with the binding
energy quantisation condition, by requiring that the wavefunction and its first
derivative are continuous at r = a, plus the requirement that the wavefunction be
normalised. Continuity of the wavefunction immediately |eads to,

] -l
ais_né:aee_’ where, £ =o0a and n=pa 4
g n
Continuity of the gradient of the wavefunction is easily shown to lead to the quantised
binding energy condition,
n=-gcotg )

From the definition, Equ.(4), for agiven potential well the solution is constrained to
lieonacirclein & —n space, i.e,

£2+n’=x2  where x,=a/2mV, /% (6)

Thus, Equs.(5,6) together define discrete possibilities for the binding energy, B. If
K, </ 2thereisno bound state. If n/2 <k, < 3n/2 thereisexactly one bound

state, whereas for 3n/2 < k, < 5n/2 there are exactly two bound states, etc’.

We can now find the coefficients g and a explicitly by requiring that the
wavefunction be normalised, i.e. requiring that,

vl av =1 @)

alE®

The contributions to the integral are evaluated separately for the interior (r < @) and
exterior (r > @) parts, giving,

2 2 sin? ar 2n|ai|2( —Sinzij
r<[J\I/| dv = I4nr dr-fa| oy e ®
2.3
_ﬂW| av = I4rcr2dr |a | ) 2TE[|38.3| Ba 2n|?"]e?|’ a e—2n (9)

! That is, counting only S waves of the same net spin. The states enumerated correspond to different
principal quantum numbers, n.
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Note that the dimensions of a,f are 1/length, and that of the squared-coefficients &2
and as’ is 1/volume. The coefficient a.may be eliminated from Equ.(9) in favour of &
with the aid of Equ.(4). The sum of (8) and (9) may be simplified with the help of the
identity,

sn’g sn2 _a (10)
B 200 M

from which it follows from (7) that,

2 OLZ
all =—— 11
al 2na(1+1/n) (1)
from which the external coefficient a. may also be found using Equ.(4) if required.
Incidentally, we note that Equ.(4) shows that the two coefficients g and a: arein
phase, and hence may both be taken as real, so we can drop the modulus sign.

2.1.2 Orthogonality of Bound States of Different Energy

For a given potential function, V(r), thereis agenera theorem that any two solutions
of Schrodinger’s equation with different energies are orthogonal (even if they have
the same angular dependence). This orthogonality isimportant to arguments which
will be deployed for the proton-proton system later. Hence we carry out a check that
the solution of Equs.(2,3) respects orthogonality. Thus, we intend to show that,

[wiw,dv =0 (12)

alE®

where the subscripts denote solutions with different binding energies. The internal
part of thisintegral is,

Sno,r sino,r

3. = |4nr?dr-a,a,
i 6|. a:l.l 2i Otlr O(.zr
(13)

 2na,a, {sin(ocl —a,)asin(o, + ocz)a}

oy, (a‘l_a2) (al+a‘2)
and the external part is,

e_Blr e_BZr
Bir  B,r
4Tca1 a2 ef(Bli’BZ)a
_ e“2e
BB, (B, +B2)
_ 4na’a;a, Sné, Sné,

&:,(By+B2)

3, = J'4nr2dr-alea26
a

(14)

(the latter step uses Equ.4). Equ.(13) is easily ssmplified to give,
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4ma,ay,

[ard —
3, = 5

, [0, sing, cosE, —a, SN, cosé, | (15)
alaz(al - az)

Using Equ.(5) to write cosé = —(n/&)sin&, Equ.(15) becomes,

) . .
5, - 4ma'a,2, (B, —Bz){snalsnaz} 16)
(al _0‘2) .6,
However we have that,
2m
Blz - g =h_2(Bl - Bz) (173)
2m 2m
and 0‘12_0‘3 :h_z(El_EZ):h_z(_ Bl+BZ):_(Bf_B§) (17b)

Hence, from Equs.(14) and (16) we seethat I3, = -3, in other words the total
integral of Equ.(12), 3, + 3., is zero. Thus, the two bound-state wavefunctions are
orthogonal as claimed. QED.

2.1.3 The Zero-Range Approximation For Bound States
It will be useful later in simplifying the algebra to develop a“zero-range”
approximation in which a— 0 and V, — « in such amanner asto ensure that the

binding energy, B, remains constant. Contrary to what one might initially guess, this
does not mean holding the combination aV,, constant. If this were done, the

dimensionless parameters & and | would remain constant, which would lead to

B = n/adiverging as 1/aand hence B diverging as 1/&°. Instead, it is clear that 1 must
reduce towards zero as ‘@’ does, so that B = n/aremains constant, and hence B also
remains constant. By virtue of the quantisation relation, Equ.(5), it follows that & must
approach /2. (We confine attention to the lowest lying bound state. We shall not be
considering higher lying bound states of the same spin to arise. They would exist only
if gs were increased by afactor of 3). We check that this “zero-range” approximation
continues to respect the normalisation of the wavefunction as follows:-

By using & = n/2 and o = w/2ain Equ.(8) we get the interior integral to be,

No= [ufav - 8 2w (18)
T

r<a

Noting that Equ.(9) may be written in terms of the interior coefficient, using Equ.(4),
and substituting = /2 and o = t/2a gives,

(19)

2 2ma, *sin¢ 8a’a’
Ne = ,ﬂw| dv = | (LZB - B
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Thus, the ratio of the interior to exterior integrals X, /X isof order ‘a3 > and hence

tends to zero as ‘@’ does. Thus, in the zero-range limit, the nucleonstend to lie
entirely outside the range of the nuclear force. The exterior integral alone must
therefore tend to unity, X, — 1, which gives,

B
a>—->—- 20
7 ga? (20)

The same result is obtained by considering the limit of Equ.(11). Finally, Equ.(4) is
used to give the exterior coefficient in the zero range approximation, using & = n/2
and n=pa— 0, giving,

, B’
a2 >t (21)
21

In fact, we have already found the coefficients for the bound S state without recourse
to the zero-range approximation, i.e. Equ.(11). It will be required later to know the
zero-range approximation for the coefficients to second order. The second order
approximations for oo and & will be discussed in Section 2.2.2 and are given in
Equ.(31). The corresponding approximation for sin&/¢& isgiven by Equ.(64a), and
will be needed in Equ.(4). Thus, we find the second order approximations for the two
coefficients using Equs.(11) and (4) to be,

2 _ "B :_B°(,, 8 _1. 8
a _8a2(1 (Ba), a’ 2n(1+n2 Baj, =1 . (20b,21b)

2.2.1 FreeNeutron-Proton S States
We now consider the positive energy S-state solutions of Equ.(1). These may be
checked by substitution to be,

sinp,

Y=g, : p, =ar, o=42m(\V,+E)/n, forr<a (22)
Pi
= &ssmpe+aec COSpe, p.=kr, k=+2mE/h, forr>a (23)

Pe Pe

Note that we have used the same symbols p; and o for the interior solution as for the
bound state, since the expressions are algebraically identical. However, the energy, E,
IS positive here rather than negative. Thus, the numerical values of a cannot be the
same. The exterior solution is now oscillatory (i.e. wave-like) and consists of two
terms — since both tend to zero at infinity. The three coefficientsin Equs.(22, 23) can
be found, in principle, using the requirements of continuity of the wavefunction and
itsfirst derivative at r = a, plus the normalisation condition. The continuity conditions
are,
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aismazaess'm{+aec cosK where £=aa and k=ka (24)
3 K K
oa cos§ sng _ kaes{COSK ~ smzK}_ ka&{snn s COSZK} 25)
§ & K K K K

Thus, in principle, the two exterior coefficients may be found in terms of the interior
coefficient from Equs.(24, 25). Normalisation is now considered. The interior integral
isalgebraically identical to Equ.(8), i.e.,

5= Jofav -2 a- T2 (26)

o’ 20

r<a

The exterior integral is,

2
™ sinkr coskr
N, J 4mr d{aES o +a, o } (27)
Note that the domain of the exterior integral is finite, up to somelarge rma. Thisis
necessary in order to make the integral (27) finite. It means that the coefficients of the
free wavefunction can only be found in terms of this arbitrary normalisation
dimension. Thisis always the case with free (wave-like) states. Ultimately this
arbitrary normalisation dimension will cancel out from any expression for a
physically measurable quantity (usually by cancellation against the density of states
term). Whilst rpais arbitrary, it must be very large compared with all the
characteristic dimensions of the problem (otherwise confining the state to a small
finite volume would have physically measurable consequences). Thus we require,

e >a ad r_>1k ad r,>1a ad r,,>1/p ad r, >1/k,

where kg in the last inequality is \/2mV, /7 . As anillustration consider the deuteron.

We havea~ 2fm, 1/ko ~ 1fm (Vo ~ 37 MeV), /B ~4.3fm (B = 2.22MeV). If we
consider nucleon kinetic energies of (say) 1IMeV, 0.1Mev and 0.01MeV then L/k is
respectively 6.4fm, 20fm and 64fm. The size scale 1/ is virtually the same as 1/kg in
the energy range of interest, and is not important anyway since ‘a’ sets the scale for
the interior solution. Thus, in the energy range of interest it is 1/k which forms the
largest size scale associated with the nucleons, and our normalisation region must be
chosen with rpa >> 1/k. Thereis one further size scale, namely the wavelength of a
photon with energy sufficient to disintegrate the deuteron, i.e. A < hc/2.22MeV =
89fm.

Returning to the exterior integral of Equ.(27), the exact integration yields an
expression which involves the difference between trigonometric functions eval uated
at 2p, e = 2KI o @Nd 2 = 2ka. Considerable simplification results if we choose

these two parameters to differ by an integral multiple of 2x, ie.,
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Kr..« = Ka+nmt wheren=integer (28)

(of course, n will need to be avery large integer because rma >> a). EQu.(27) then
becomes,

2

N, 2

(82 + a2 X —2) (29)

Thus, in principle, having found the two exterior coefficients in terms of the interior
coefficient using Equs.(24, 25), the latter is found explicitly by adding (26) and (29)
and equating to unity. The algebra appears rather forbidding. Instead we consider this
procedure only in the zero-range approximation in the next Section.

2.2.2 TheZero-Range Approximation For Free S States

The zero-range approximation was introduced in Section 2.1.3. We use the same
approximation here except that we now need to retain higher order terms. Thisis
necessary to ensure that orthogonal states remain orthogonal in the approximation
used. Thus, proceeding immediately to the limiting values § — n/2 and n — 0, for

example, istoo crude. We require expressions which retain terms of order ‘a’.

Despite the fact that we are dealing here with free states, recall that the “zero-range”
approximation is only defined with respect to a specified binding energy, B. Thisis
because the limiting process a — 0, V, — « is defined by the requirement that B be

constant. Hence, derivation of the order ‘a’ termin & requires consideration of the
bound-state quantisation condition n = —-§cot& . The value of n to first order is,
trivially, n = Ba. The derivative of the quantisation condition gives the size of the
variationin & for agiven variation in n, thus,

on = —d&.cot & + & cosec?E.dg, (30)

Thus, near the limiting valuen = 0, § = n/2the cot term is zero and the cosec term is
unity, and the small change in n isjust n itself, giving,

d&zgn and hence §z3+gﬁa and azl+gﬁ (31)
T 2 = 28 ©

We now use (31) to approximate the LHS of Equs.(24,25), and also retain only the
first terms of the trig functions on the RHS, giving,

g[l— izﬁajai =a,+ (1 - EJaec (328)
T o K 2

4 kk 1 1

?(14- QBa)aai = ?a&; + k[? + Ejaec (32b)

where, { =1-8/n*. Expressing the RHS of Equs.(32a,b) as a matrix, the inverse of
the matrix is (retaining leading terms in « in each component),
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1+x*/3 —«x/k
33

{—18/3 Kz/kj| (33)
Multiplying the above matrix by the column vector formed by the LHS of
Equs.(32a,b) thus gives, retaining only leading termsin ‘a’,

2
a, —> ——Pag (34a)
T
2
a, — —kaa (34b)
T

We can now find the normalisation integrals explicitly. Using Equs.(34a,b) and
& =n/2anda = n/2a, Equ.(26) givestheinterior integral as,

N = 8 a’a’ (35)

T
which isthe same as the interior integral for bound states in the zero-range
approximation, i.e. EQu.(18). However, Equ.(29) gives the exterior integral as,
2
N, = 814 5_2 raa’ = §(1+ Ejrmaxazai2 (36)
T k T E

and hence differs from that for the bound state, Equ.(19), which does not involve a
finite normalisation radius, rna. As before we see that the ratio of the integralsis
N, /X, =~ O(a) — 0. Hence, the normalisation condition is &, — 1which gives,

2 T

& geBlEN

(37)

from which the exterior coefficients may be found using Equs.(34a,b). Thus, aswe
found also for the bound states, in the zero-range limit, the nucleons tend to lie
entirely outside the range of the nuclear force.

2.2.3 Orthogonality of Free and Bound States. Zer o-Range Approximation
The zero-range approximation has been introduced to facilitate calculation of the
matrix elements which are needed to compute the n-p system cross sections. It is

therefore essential that states which are truly orthogonal also have < \|!1|\|12 >=0

when evaluated using the zero-range approximation. Were this not the case we could
have little faith in the required capture/disintegration matrix elements evaluated using
this same approximation. In this Section we shall check that the zero-range

approximation does indeed yield < \|11|\|12 >= 0 between abound state (1) and afree
state (y2). Theinterior integral isidentical to Equ.(13), i.e.,
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Snao,r sina,r

3. = |4nridr-a,a,
i 6[ a1| 2i Otlr azr
(38)

_ 2ma,a, {sin(oc1 —a,)asin(o, + ocz)a}
o, (0‘1_0‘2) (al"'az)

Substitution of the zero-range estimate of the coefficient ay; from Equ.(20), together
with a, —» o, — n/2a gives,

2 % %
3, = 2na, [ﬁj (“—Bj {a—ﬁ(sjn n= o)} - (%j a’a, -0 (39)

n )\ 8a* T T

The exterior integral consists of two parts,

!

max —Br H
S = Jalee aassmkr-4rcr2dr=A'm’j]“—ea%xS (40)
: Br kr Bk
Tmex —Br
and, Fee = .f a, © Qe COSKT per2dlr = %—eamxc (41)
: Br Kr Bk
where, As = .fe’B’ sinkr-dr = (Bsm k?+ K SOSkajeBa (42
: B°+k
and, Yo = _|'e“3r coskr -dr = BCOSk? — kzg nka | (43)
: B +k

and where the integral s (42,43) have been evaluated by assuming thelimit r_, — .
In the zero-range approximation (a — 0) these become,

[k _[__B
XLs _(BZ'FKZJ and Xec _(BZ'FKZJ (44)

Thus, substituting Equs.(44) into Equs.(40,41), together with Equs.(34a,b) for the
exterior free state coefficients, gives,

4na, 2 k a
J.=—=|-——Bala, ——=-8,.a, —— 45
‘Ses Bk ( TEB j 2i Bz+k2 ale 2i B2+k2 ( )
4na,, (2 B a
and, S =—| —kala, ——=8a.8, 5 =-3 46
> Bk (n }2[32+k2 % 2 B2 +k? N (46)

Thus, in view of theinterior integral once again tending to zero in the zero-range
approximation, we have < |y, >= 3 + I, =0 by virtue of Equs.(45,46). QED.
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2.3 Neutron-Proton Bound-Free Matrix Element: S States
In this Section we use the results of the previous Sections to find the matrix element

<Y pound (3S)‘wfree(18) > in the zero-range approximation. Note that if the bound and

free states were in the same spin state (i.e. both triplet or both singlet), then this
matrix element would be zero, as shown in Section 2.2.3, above. The reason why
orthogonality does not apply when the spin states are different is that the nuclear
potential differsfor the two spin states. Thus, the free and bound states are solutions
of different Schrodinger equations. We may summarise the results of the preceding
sections for the wavefunctions as follows,

W bouna (°S) =aim, p,=ar, o=,2m(V,-B)/n, forr<a 2
—Pe
Woouna (*S) = 8, °, p.=fr, B=+2mB/n, for r>a (3

e

where, V, represents the triplet nuclear potential and B the corresponding binding
energy. In the zero-range approximation we have,

3
a’ —>“—BZ 2P LT (20, 21)
8a 2n 2a

Similarly, for the free singlet state,

\Vfree(lS)=51ﬂ, p.=ar, a=y2m(V,+E)/n, forr<a (22b)
Wfree(ls)=a§m+am%, p.=kr, k=+2mE/n, forr>a (23b)

Pe Pe

where the tildas indicate that the free singlet state parameters differ from those of the
bound triplet state. In this case, V,, represents the singlet nuclear potential, and hence

\70 <V,) . Inthe zero-range approximation we have,

a, > —Eﬁa'é,. B=+2mB /% (340)
TT
a, — 2 kad (34d)
T
~2 T
2__ 37b
* T8 BIEN2 (370)

where B represents the binding energy corresponding to the singlet potential \7O .
Thisformulation of the zero-range approximation for the free singlet state isfine —
provided that a singlet bound state exists (and henceB is defined). Unfortunately, a
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bound singlet state does not exist in this universe. In this case we may identify the
parameter E = «/ﬁ / h with the reciprocal of the singlet scattering length, i.e.

B =1/ a. Because there is no singlet bound state, the singlet scattering length is
negative, and hence sois E . However, Bremains positive.

[Aside: That E can be identified with the reciprocal of the scattering length may be

established as follows. From standard scattering theory (e.g. Evans P.319), in the limit
of zero energy the external wavefunction may be approximated as,

1
LIM(k — 0) : y — constan t{l— Ta} 47)
But Equ.(23Db) gives the external wavefunction in the zero energy limit as,

L|M(k—>0):w—>a$+%° (48)

and with the help of Equs.(34c,d) this becomes,

L|M(k—>0):w—>—3'[§aa{1—~i} (49)
T Br
Equating (47) and (49) yields E =1/'a, asclaimed].
We can now calculate the required matrix element,
< \Ubound (38)‘Wfree(ls) >= Si + Se (50)
where,
3, = j4nr2dr -aa Shar Shor
5 ar ar (51)
_2naa [sin(a-a)a sin(o+d)a
ao (o —a) (o + )
Substitution of the zero-range estimates oo — a. — 1/ 2a gives,
2
3, :Znai'é{@J {a—e(sinnzo)}:gaBaia -0 (52)
T T T

The interior integral isthus negligible in the zero-range approximation because the
interior coefficients diverge only as 1/a, see (20) and (37b).
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The exterior integral is,

Mmax _ﬁr -
3, = I aee—{a% sinkr +a, C05kr}4nr2dr (53)
. Pr kr kr

Apart from the actual values of the coefficients, thisintegral isidentical to the sum of
Equs.(40) and (41), and may be evaluated in the zero-range approximation using
Equs.(44). Thus we get,

Se _ 4TCae {aﬁ(Lj+ aec( B ]} (54)
Bk k? +B? K +B?

We now substitute the zero-range approximations for the exterior coefficients from
Equs.(21, 34c,d) giving,

Je ;Tkt(znjz - ]{ k(kZEsz}
()

and Voo NV ('9 > 3, (55b)

(55a)

From Equ.(55) we can see that the reason why <y, (38)‘\;;”66(18) > isnot zerois

that B — E IS non-zero, due to the different nuclear potentials in the two spin states.

On the other hand, if the spin states had been the same, and hence 3 = E Equ.(55)

reproduces the required orthogonality demonstrated previously. Using Equ.(37b), the
squared matrix element is,

< Vo (9 > = {kﬁlg} i+ 5 Ef o

2.4 TheFreeNucleon-Nucleon P State

24.1 The (Free) P State Solution of the Schrodinger Equation
The solution is given by Equ.(57) and Equ.(58) below;

Forr<a, y=aj,(p,)P"e™, where, p, =aa, (i)’ =2m(V,+E), &=aa
Forr>a, y=[a_j,(p.) +a.n,(p.)|JP"e™, where, p, =ka, (7nk)’ =2mE, k=ka

where j; and n; are the two independent spherical Bessel functions of first order, i.e.,

Page 13 of 30



Rick’s Cosmology Tutorial: Appendix A2 - Derivation of the Neutron-Proton Capture
Cross-Sections In This Universe

smp cosp

j1(p) =
P

cosp Sin
p,Snp

nl(p) =
p

(59)
(the conventional definition of n; has the opposite sign to ours). In Equs.(57,58) we
have used an un-normalised form of the spherical harmonics,

P°=cosd, P/'"=sn6 (60)

We shall be concerned only with the m = 0 solution, since the m = +/-1 solutions have
zero electric dipole matrix element with the bound S-state by virtue of the azimuthal

angle dependence, i.e. <* (bound)|r cose|3P(free), m=+/-1>=0.

The derivatives of the spherical Bessal functions may be written,

., sin cosp Sin cos sinp cos
(P =-27P+ 2L TR nj(p)=2=P 2= P 220 (6
p Y P P p P

The continuity conditions at r = aare,
aJ;(€) = 8y () +a.n, (k) 8,01 (§) = aLkji (i) +ackni(x)  (62)

2.4.2 Zero-Range Approximation For The Free°P State
To give anon-zero electric dipole matrix element for atransition between the ground
triplet state of the deuteron and a free P-wave state requires the P-wave also to be a

spin triplet, i.e. °P. [Thisis because <* S(bound)|r cose|lP(free) >= 0 because the spin

states are orthogonal and the electric dipole interaction does not cause a spin flip].
Hence, in deploying the zero-range approximation it is the triplet binding energy, B,
which isrelevant. (This contrasts with Section 2.2.2 in which the free singlet S state
was considered, and which therefore involves the singlet binding energy, B’). Thus, to
recap, the zero-range limiting conditions are,

a—>0, x=ka—0, a—>5+35a, az&/a—>£+gﬁ (63)
2 @ 28 w

Hence, we find the limiting forms,

Sng (1——[3a——(8a) j+0(a3) (64a)
& T

T (2] - Spa) o) (640
& T T

o (2] (1-Zpas Zcpar o) (640)
& 0 T i
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cost a_(éj Ba+ O(a) (640)
1 i

coss —(Ej Ba(l— %Baj +0(@) (64¢)
& T T

where ¢ = (48/n?)-1~ 3.8634, so that,

(&) > i2(1+ tpa)+O(a?), where (= 1—% ~0.189%4 (65)
T T
10> 2 1-Zpa- 2 pa | ofe) (66)
T T Y
where CC" =¥_2_(2)+1= 0.4446 .
T ne 2

Similarly, taking the limit ¥ = O(a) — O gives,

jl(K)—>g+O(a3) n, (x) —>K—12+%+O(a2) (67)

j1 () —>E+O(a2) n; (k) —>—%—E+O(a‘"’) (68)
3 k> 4
Hence, the continuity equations (61,62) become, in the zero-range approximation,

A argpan = Sa (LT (6%)

Eca(l—l—fsa—iza(ﬁa)zjai _Ka, —(2—‘§+Ejaec (62b)
T T T 3

Solving Equs.(69a,b) gives,

L

where, ¢ = (1 - izj - (Ej z;(z;" + ij(ﬁj =-0.072- o.2735(ﬁj (70b)
3 = T n° K k

We can now determine the magnitude of the coefficients in the zero-range
approximation by enforcing normalisation. In view of our earlier results we anticipate

a, = {1 + G+ O(az)}ai y A = K‘%JF izj‘(z + O(as):|ai (709)
K
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that the interior integral will be negligible in this approximation. It will equal some
numerical constant, A;, which could be found by explicit integration, times |ai |2a3
i.e,

3, =Alal’ @ (72)

The exterior integrals are,

=|ag| Ijl(kr)) cosze'ZTcd(9~r2dr=43 2| Ijl(kr))2 r2dr (72a)

~Ja|” [(n,(kn))? cos? 6. 2nd0- rzdr—?aec| Juaanyyrear 20

a a

It isclear on dimensional grounds that, in the zero-range limit, we get,
T = Aufae] K2 = Aglal k™, /a° (73a)
Te = Aulae| K = Ala ] Tmd® (73b)

where the second form has used the zero-range limits for the coefficients, Equ.(70a).
The sum of (71), (73a) and (73b) must be unity. Hence it is clear that a must be of
order aas a— 0, which makestheterm 3 — 1 andtheterms 3,3, — 0. Infact

the latter integrals are of order & and & respectively, and hence are negligible even as
afirst, second or third order correction. We now find the coefficient A by explicit
integration of Equ.(72a). We have,

Tmax Pmax ) H
= Jluaypriar = | SR 2STRCOSP

+cos® p dp (74)
5 kK> JL p p

With the help of Gradshteyn 2.642(5), the first integral isfound in the limit that
k = O0andp,, — » tobethesameas,

js'”xdx—— (75)

By transforming to the integration variable x = 2p, the second integral in (74) isalso
found to equal (75), and hence cancels with thefirst. To evaluate the third integral we
assume aswe did in Section 2.2.1 that the range « top ., corresponds to awhole
number of wavelengths. Hence, the third integral is simply (pmax-x)/2. [Incidentally,
this assumption also means that the density of states must be the same for the P-wave
asfor the S'wave]. Thus, we get | . = p,, / 2k® to an accuracy of O(k) and hence,

Page 16 of 30



Rick’s Cosmology Tutorial: Appendix A2 - Derivation of the Neutron-Proton Capture
Cross-Sections In This Universe

2nr, .
3k?

27D

Ve T 33 |aeS|2 (76)

| =

and equating this to unity gives,

ol L sk, 3k

(77)

* 27l ’ 270 o ’ * 270 o
[where & and as are positive, but aq is negative]. It is clear that we need be concerned
only with the exterior j; (as) term from now on. We will see below that the second
order correction isimportant as regards the coefficient of the bound state. However,
the second order term is not important for the free state. Accounting for the finite size
of k, thefirst two integralsin (74) do not exactly cancel, but rather contribute a value
-k + O(k%). Since this has been ignored we need to add « to k| to correct it.
However, the third integral also contributes an amount -x/2. Hence, the overall
correction to k’le isto add k/2 to it. Thus we get,

IS:p”‘"";+ Kszpm"";‘ 1+-% :pm"";‘ 142
2k® 2k® 2k p 2k r

max max

and because the correction term, linear in ‘@’, involves the ratio alrma, it is negligible.

2.4.3 Bound *S- Free>P Dipole Matrix Element
The above development of the free °P state has been motivated by the requirement to
calculate the electric dipole matrix element,

<* S(bound)|H ..., o E,r cosd| P(free) > (78)

electric

We note in passing that the *S(bound) — *S(free) electric dipole matrix element is zero
(the spin states are orthogonal, and also the angular integration in the spatial matrix
element is zero). Asfor *S(bound) — *P(free) matrix element, the spatial part is non-
zero, being identical to that for the *P state. However, the spin states are orthogonal —
and, of course, the electric interaction Hamiltonian does not cause a spin flip. Hence,
in this Section we calculate the matrix element (78) only.

It turns out that, unlike the S-S magnetic dipole transition, it isimportant to work to
second order in the zero-range approximation. We have seen, above, that the interior
and exterior ny coefficients are negligible, hence we need consider only the exterior j;
term. The matrix element, (78) isthus,

5 3 e e  (sinkr coskr
<* grcosf| P >= _[ae - —~
a

Br (kr)? kr

_ 4m,0 rTe“” [sinkr — kr coskr [dr =

e

JZn cos® 0 - d(cos6).r*dr

(79)
4naa

3Bk’

€s

e -
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ak(B coska— ksinka)e ™™ —k2y . + Bky,
k? +B?

integrals ys and ycare given by Equs.(42,43). The zero-range approximation for these

integrals, retaining terms linear in ‘a’, are,

where integration by parts gives, y = and the

L 2y. B _ 2y.
s = K21 p? +0@°%); %.— K21 p? a+0(a”); (80)
X —>k(BZ—_kZZ)+O(a2) (81)
(B2 +K?)

The important thing is that the correction terms linear in ‘@’ cancel from both

. and y , and hence thereis no linear correction term to the matrix element (79) from
the integral itself. We have also seen from Section 2.4.2 that thereisno linear ‘@’
correction term in the free state coefficient, a«. Hence, the linear ‘@’ correction arises
entirely from the correction to the bound state a coefficient, as given by Equ.(21b).

Substituting Equs.(80,81) into (79) gives,

<* Sreosf*P>= La%kz (82)
Plk* +p?)
and substituting for the coefficients from Equ.(21b) and Equ.(77) gives,
2 2 3
2
<* Sreoso|’P >‘ = Bk . ( 3 J{B j{1+ EBaj
3B(k2 + BZ) 21l \ 21 T (83)

_ 16k’ (1 3)
A

noting that the matrix element has dimensions of length.

3. TheCross SectionsIn Terms Of The Matrix Elements

Schiff describes the derivation of Fermi’s “Golden Rule #2”. We envisage a bound
state being exposed to electromagnetic radiation so as to induce photodisintegration.
Schiff’s Equ.(35.14) gives the probability of a given composite object (e.g. a
deuteron) disintegrating per second (w) in terms of the density of final states per unit
energy range (dp/dE) and the relevant matrix element, i.e.,

2n dp

th

\ (100)

where H’ is atime independent interaction Hamiltonian (energy). [NB: Schiff’s pis
our dp/dE]. Schiff’s derivation of Equ.(100) requires that the time independent
interaction Hamiltonian is related to the actual interaction Hamiltonian by,
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< \Vin

H,(t)|\‘r!out >= 2 < \Vin H,|\|]out > Slncot (101)

where o is the (angular) frequency of the radiation. The salient feature of Equ.(101) is
the factor of 2.

3.1 Density of States

In this Section we derive expressions for the density of final states. Recall that we are
envisaging the photodisintegration of a bound state into a pair of nucleons, so the final
state isthat of apair of free nucleons.

Density of S States

Recall that, in order to simplify the algebra resulting from normalisation, we have
aready effectively assumed a discrete set of free states — see Equ.(28). These states
are equally spaced along the k-axis, with aspacing of Ak =r/(r,,, —a) — =/t , the
latter applying in the zero-range approximation. Thus the number of states per unit k
range is one per Ak . Since the (total) energy of the pair of nucleonsis given by

E = (7k)? /2m , where m is the reduced mass, we have dE = 7%kdk / m . Thus, the
density of states per unit energy interval is,

max

dp _dp dk _ 1 M g M
dE dk dE Ak i’k  m A’k

(102)

Density of P States
This needs checking, but | suspect it will be the same as Equ.(102).

3.2 Photodisintegration I nteraction Hamiltonians

We shall work only within the approximation that the wavelength of the
electromagnetic radiation islong compared with the size of the region within which
there isasignificant change of finding the nucleons in the bound state. Recalling that
‘@ isroughly 2fm, and that the decay length in the exterior regionis 1/ = 7/~/2mB
= 4.3fm for the deuteron, we require radiation with wavelength greater than about
10fm, i.e. photon energies less than about 20MeV. Since it requires a photon energy
of 2.224MeV to disintegrate a deuteron, we are implicitly considering the specific
photon energy range 2.3MeV — 20MeV, or so.

Thus, we can consider the el ectric and magnetic fields comprising the electromagnetic
radiation to be uniform over the size scale of interest. The electric component of the
interaction energy isthus,

H!

electric

= N eE,z= N eE;rcos (104)

where, in line with Equ.(101), H' and hence E, are the amplitudes of the radiation

wave. We imagine (104) to be the potential energy loss, or gain, if the nucleons
undergo arelative displacement by ‘z’ in the uniform electric field Eq. The polar z
direction is therefore the polarisation (E-vector) of the radiation. The charge ‘e’ is
taken as positive since we are dealing with a proton. Finally, N, is the number of
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protons. Thus, N, = 1 for the deuteron, Ny = 2 for the diproton, and N, = O for the
dineutron. Thus, there is no electric dipole interaction for the dineutron, but the
electric dipole interaction Hamiltonian is twice as great for the diproton as for the
deuteron.

The magnetic field couples to the magnetic dipole moments caused by the nucleon
spins. Denoting a Pauli-type operator by &, representing the spin in some fixed
Cartesian direction (but with eigenvalues +1 and —1) we may write the magnetic
moment operator for a two nucleon system as,

Y

. .\ ©n
Mag = (chl + Hzoz)w (105)

p

where ., , are 2.7934 and —1.9135 for the proton and neutron (but note that particles 1

and 2 may both be neutrons or both protons, or one of each). Also note that the
gyromagnetic ratios are twice the p, , , because the nucleon spinis 72/2. The

magnetic dipole interaction Hamiltonian operator may thus be written,
H;nagnetic = Mag ’ BO (106)

where the direction of the magnetic moment operator is chosen to align with the
applied magnetic field (or, generally, the dot product is taken). Note that (106) again
involves the amplitude of the magnetic field, in line with (101). Thus, we see from
Equ.(100) that the magnetic dipole cross-section depends on the matrix element,

' _ spatial spatial spin '
H magnetic \Vout >=< \Vin \Vout >< Win H magnetic

YIS (107)

< \Vin

where we have written the wavefunctions as a product of a spatially varying part and
the spin part so asto illustrate that the magnetic dipole interaction involves only the
spin part [because (106) is uniform in space — in the approximation that the photon
wavelength is large compared with the size of the region within which the bound
nucleons might be found]. The spatial matrix element between S states has been
evaluated in Section 2. We now evaluate the spin matrix element.

We denote by ‘1¢2¢ >, say, astate in which particle 1 has spin up and particle 2 has

spin down, etc. By virtue of (106) we shall take the spin z direction to be the local
magnetic field direction. So, for example, we would have,

A . .\ €h eh
Mag‘l@i = (chl + “zoz)m‘l?2¢ >= (Hl - Mz)w‘lﬁ2¢ > (108)
p p

The states which are of interest are the eigenstates of the total spin operator. These are
(see any standard text),

|S>=%H1T2$ >4,2, 5] T,0> =%U1¢2¢ >+1,2, 5] (1099)

Page 20 of 30



Rick’s Cosmology Tutorial: Appendix A2 - Derivation of the Neutron-Proton Capture
Cross-Sections In This Universe

T+1>=[12, > T-1>=,2 > (109b)

where ‘S’ and ‘T’ stand for singlet and triplet respectively. We can now evaluate the
spin matrix element in (107). We note firstly that we are only interested in the matrix
elements for which thein and out states differ, i.e. oneis singlet and the other triplet.
The spin matrix element could be non-zero even for identical in and out spin states
(specifically if the statesare T,+/-1, but are zero for T,0 and S). However, the spatial
matrix element in (107) would then be zero by orthogonality, as we have seen in
Section 2. That is,

spin spin spatial

\‘Vln = WOU( =< Wlﬂ sz]?nal >= 0 (llo)

Wefirstly note that the spin matrix element between a singlet state and atriplet state
with non-zero azimuthal quantum number (m = 0) iszero, i.e.,

(111)
. . \€nB
< Wlsr?m H:’nagnetlc szltn >=< T’+1|(H161 + MZGZ)WOS>
p
1 . . \€nB
= E < lTZT‘(MlGl + MZGZ)W: HJ‘?zi > _‘1¢2T >]
1 enB
-7 2M: {< 1,24y 1, 12, >‘— <L2|(-py + 1y 1,2, >‘}
=0

We are therefore left with the <singlet — triplet, m=0> matrix element as being the
only one of interest. Thisis,
(112)

spin

ehB
<y ~IS>

\V?fftn >=< T’OI(Mlél + HZ&Z)M

H!

magnetic

le2¢ > —‘1¢2T >]

1Y .. \eiB
:(Ej <12, +<1,2, |](M161+M262)WZ

i‘ -H, 1T2 >‘ <1 2?‘ p1+p2)|12 >‘}

_%Bo
2M,

(s —1ty)

Thus we see that the spin matrix element of interest is proportional to the difference in
the two particles’ magnetic moments, p, — ., . It follows that there will be no
magnetic dipole transition for identical particles, or any particles with the same
magnetic moment. Note, however, that we are working to first order in the
perturbation, H’, and have also ignored the spatial variation of the electromagnetic
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field. Relaxing one or both of these approximations may result in a magnetic
transition even between identical particles. Thisis beyond our scope.

3.3 Electromagnetic Units And Photon Density

Conversion of the transition probability rate of Equ.(100) to a cross-section requires
the flux of photons corresponding to the interaction Hamiltonian H’ to be evaluated.
Before doing this we recap some basic electromagnetic theory, together with the
MKSA units. In the following, [x] denotes “the units or dimension of x”. The notation
for units and dimensions will be,

M = mass, L =Length; T =time, C = Charge
kg = kilogram;m = metres; s=seconds C = Coulomb

The ambiguity in ‘C’ will not matter since they relate to the same quantity. Note,
however, the important distinction between M and m.

N = Newton = kg.ms?; J=Nm
Fa (Farad) = C3J* He (Henry) = JC%* = §’/Fa

E = Electric field; Force = gE implies [E] = NC*

- ~ implies [¢,] = C2T'm™ = Faim: 4ng, =107 /c® Falm
Ane r

B = Magnetic field (flux density); Force = Bqv implies[B] = NC'm’s = kgC's™

5B =0 LT ies [u,]=NC?# = Hem: ¢ =107 Heim
4T r 4n

og, =1/¢% (§m)?

Maxwell’s Equations (vacuum):-

()cv-B=0 (QV-E=plg, (113a)
@VxE+ B -0 @cwxB-1E_ L (113b)
ot cot cg,

where p and J are charge density and current flux. It is ssmply checked that all terms
in the four equations, written as they are above, have units Nm™*C™.

In a gauge in which the scalar potentia iszero, B=V xA and E =-0A/ét.
Maxwell’s equations (1) and (3) are then identities. A convenient representation of a
plane electromagnetic wave s,

(114)
A=A, lei(k'”“) + e’i(”’“t)J =2A, cos(E-F -~ (ot) with A,-k=0 and ck=o
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which ensures all the Maxwell equations are obeyed, and for which,
E=—20A,snk-T-ot) and B=-2kxA,sin(k-7T-ot) (115)

At r =0 (115) reducesto (101). Note that k isin the direction of wave propagation,
A, isinthe direction of the polarisation (electric field vector), and B is

perpendicular to both. Note also that the matrix elements of H” which enter the cross-
section formula are defined by amplitudes E; and B which are only half the true
amplitude of the electromagnetic wave, i.e.,

E,=oA,and B,=kA, NB:[A]=NC's. (116)

Electromagnetic energy density, & = %0 E®+ Zi B?, [¢]=dm™ (117)
Mo

Electromagnetic energy flux, J,, = LEs B, [J,,]=dm%s? (118)

0
We are now in a position to evaluate the photon flux (in photons per square meter per
second) corresponding to the plane wave of Equs.(115). From (118) the energy flux
(Joules per square metre per second) at the origin (r=0) is,

dokAZ ., 4E? Sn? 4cB?

oy = sn® ot = ot = sin® ot (119)
Ho Cho Ho
The time average value is thus,
2 2
<3, >= 20 2B, (120)

Cho Ho

Since the energy per photon is 7o the photon flux corresponding to a
monochromatic, unidirectional plane wave istherefore simply,

2E;  2cB;
<J >= " 0 =20
oCl,  iop,

(121)

where the superscript ‘N’ denotes a number density, i.e. photons per square metre per
second.

Finally, the dimensionless electromagnetic fine structure constant is given by,

e pece® 1

o= =
dnehic Anh 137

(122)

Finally, we also note that the dimensions of a magnetic dipole moment, defined as the
product of current and area, are [m] = Cm?s™, and this agrees with the dimensions of
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the factor 7e/2M ;used to non-dimensionalise the magnetic moments of the nucleons.
This also confirms that [mB] = energy.

4. Evaluation Of The Cross-Sections

4.1 Deuteron Photodisintegration: Magnetic Dipole Cross-Section

We have seen in Section 3.2 that the magnetic dipole matrix element between the
bound >S state and a free 'S state is non-zero only if the azimuthal quantum number
(m) is zero, i.e. only if the deuteron has zero spin component parallel to the magnetic
field, B. We shall assume that we are dealing with unpolarised deuterons. In this case
only onein three deuterons will be favourably aligned with the incident radiation’s B-
direction (because the three triplet states are equally likely). The formulafor the
unpolarised disintegration cross-section is therefore derived from the transition
probability per second, Equ.(100), by dividing by the photon flux, Equ.(121), and also
by afactor of 3. Explicitly including the density of states from Equ.(102), gives,

HI

‘2

< Wi H o > (123)

where k relates to the nucleons, i.e. W = (7ik )’ / 2mis the total nucleon energy,

whereas o relates to the photon, i.e. the photon energy is 7o = W + B. Recall that m
is the reduced mass (roughly M/2). The squared matrix element is given by the
product of the spin part, Equ.(112), and the spatia part, Equ.(56), i.e.,

e eBy, I [B-BT B
H|‘Vout >‘ _[ZMp(Ml Mz)} {k2+sz| (1+§/E)rmax (124)

‘< Yin

Substituting (124) into (123), and noting that the two particles are protons and
neutronsin this case, gives,

2 ~ 2
s 127 M, hop, [ enB, B-p B
121 M, - _ 125
"M T3 Tk 2082 2|v|p(“p o) k?+p% | (L+B/E),. (129)

where pp = 2.7928, n,=-1.9130, so that pp - pn = 4.7058. Also recall from equ.(34c)

and the associated discussion that 2mB = (/' a)* and B =1/*a where ‘aisthe

singlet scattering length of the deuteron (-23.69fm). Also, following Evans, we define
the “radius of the deuteron” as p =1/ = 4.32fm. Finally, for convenience we define
alength parameter by,

h(}’tp - Mn)
2mc

L= (126)

noting that it is the reduced mass which appears in Equ.(126). Using (122) for the fine
structure constant, Equ.(125) reduces to,
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gs 2T o ~YWB (1—1 al p)2
=—oal’l ——m,, Where = 127
oM =73 (W+ B]nM = (*ak)? (127)

It isimportant to recall that the singlet scattering length is negative (i.e. unbound),
which results in the numerator of ny being ~42. If the singlet state were bound (and
hence 'a positive), the disintegration cross section for the bound triplet state would
thus be smaller.

4.2 Deuteron Photodisintegration: Electric Dipole Cross-Section

In the same manner asin Section 4.2, the electric dipole transition cross-section may
be written, using Equs.(100, 102, 121),

(128)

Thereis no polarisation factor of 1/3 in this case, since the spin direction of the
deuteron isirrelevant for the electric dipole transition. The direction of the fina

orbital (L) state of the free neutron and proton must align with the spin direction
(polarisation) of the initial photon. This meansthat only one of the L = 1 orbital states
(namely m =0) is possible. But that has been accounted for in using the same density
of states expression as for the S-waves, Equ.(102), since thisimplicitly assumes just
one spin state (i.e. it gives the density of spatial states only).

Substituting into (128) for the matrix element from Equ.(83) [times (eEo)?] and also
using Equ.(122) for the fine structure constant, gives,

4
h o nh’k  2E2 3(k2+52) r U
3
16 4 MWB)  BK 4(1+%Baj (129)
3 h (k2+82) T
2r L(JBW)[. 8 a
= opp 1+ ——
3 B+W 7 po

where the “radius of the deuteron” is p, =1/ =#/~+2mB , recalling that misthe
reduced mass, i.e. m= (M, + M)/ 4. We have replaced the incoming photon energy

ho with B+W in the above, recalling that W is the sum of the kinetic energies of the
two free nucleons (in the CoM system).

Equ.(129) appearsto differ from Evans’ Chapter 10, Equ.(4.21) by a factor of 4.
Why? There must be something amissin my derivation. Also note that the
correction term in (129) contains a factor of 8/ which Evans’ expression does
not have. This might be because the range of the square-well potential is not
quitethe same as the “effective range” used by Evans. This should be
demonstrable using Evans’ Equ.(3.19).
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4.3 np Capture Cross Sections
The (corrected) photodisintegration cross sections of the deuteron are, following
Evans,

D+y—p+n -
M :@ 2 ~VBW (130)
dis 3 MM B+W
3
e 8t v BW
- = - 131
GdIS 3 O(’p3nE(B+W ( )

Where Evans expressesthe p+ n < D +y cross-sectionsin terms of the following,
M = the reduced mass;

B3 = the binding energy of the deuteron (triplet state);

W = the total kinetic energies of the neutron and proton in the centre of mass system
(this applies whether the nucleons are the incident particles or the products). The
photon energy is given by hf ~ W + B for energies small compared with My;;

k = the relative wavenumber of the nucleons, such that 7#°k* ~ 2MW for energies
small compared with Mp;

p3 = the “radius of the deuteron” = 7/,/2MB,

rop = effective range of the singlet nuclear force= 2.7 fm
ros = effective range of the triplet nuclear force= 1.7 fm

The triplet scattering length as is given by,

1 1 1y

a, ps 2p’

In this universe the singlet spin state of the deuteron is not bound. Thisisreflected in
the negative sign of the singlet scattering length, &, = -23.69 fm. However, for the
purposes of our investigationsin this Section we shall assume arelation like (17)
applies adso for the singlet state if thisisbound, i.e.,

1_ 1 Tu

—= where, p, =h/,/2MB
&, P 2p; ' '

and, in obvious notation, B; is the binding energy of the singlet state (this applying
only for anuclear force which has been increased sufficiently to bind the singlet
deuteron state).

To derive the np capture cross-sections we use the general relation between a reaction
anditsinversg, i.e.,
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2 .
c(@+A —>b+B) _(&J number of spin statesof b+ B (132)

s(b+B—>a+A) (p,) numberof spinstatesof a+ A

where p, is the 3-momentum of particle ‘a’ in the centre-of-mass (CoM) system, so
that pa = pa, and similarly pp, = pg is the 3-momentum of particle ‘b’ (or ‘B’) in the
CoM system. We note that the RHS of (135) isjust the ratio of the density of states
availableto b + B as compared with a+ A. Thus, Equ.(135) expresses the phase-space
advantage, or disadvantage, that one configuration has over the other. This phase
space (dis)advantage is the sole difference between the forward and backward cross-
sections (i.e. the dynamical part of the cross section, as determined from the Feynman
diagram, isthe same for both). In the case of interest Equ.(135) becomes,

(133)
P,

G(D+y—>n+p)_ p,) 22 2

s(n+p— D+7) _(pyjzﬁj(pyjz
P,

The exact relativistic formulae relating the required 3-momenta to the quantities W
and B in terms of which the above cross-sections have been expressed are,

2
pZ =2MW + Z\éz and p.c+,pic’+Mpct =W+ (M +M,)c’ (134)

where the subscripts denote the deuteron, neutron and proton masses, so that the
deuteron binding energy isjust B = [— My+(M,+M p)]cz. Recall that M isthe

reduced mass, and so is roughly half M,. The above formulae from Evans have been
derived assuming kinetic energies which are sufficiently small compared with the
nucleon mass (Mp~ 938.27MeV). [NB: At 1 second, 3kT ~ 2.6 MeV < 0.3%Mp, so
this approximation is fine for our purposes]. In this case, Equs.(137) simplify to,

p:~2MW and p,.c=W+B (135)
as assumed by Evans. Using (138), Equ.(136) becomes,

o(n+p—>D+y) _3 (W+B)’
o(D+y—>n+p) 2 2Mc*W

(136)

Hence, using Equ.(136) with Equ.(130) or (131) gives the capture cross-sections as,

p+n—>D+y -

VB(W +B)

GM =TEO(.L2 R
u 2Mc2/W

cap

(137)

h _
where, Ly = (MZPTCMH) (137a)
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(1_ a1/p3)2
and, = 137b
nM 1+ (aik)z ( )

and where the gyromagnetic moments are given by p, = 2.7934 and n,, = -1.9135,

and o is the electromagnetic fine-structure constant (e° / c) as usual. Note that the
dimensions of the cross-section come from the LM term, which has dimensions of
length.

B+/BW
6t =A4nap? _— 138
o p3n{2|\/|c2(8+w)} (138)
1
where, = 138a
e 1- r03/pa ( ‘

Note that the dimensions of the ‘E’ cross-section come from the “radius of the
deuteron” term p,.

These capture cross-sections may be checked against the capture reaction rate given
by Hoffman et al. They give the reaction rate per neutron per second for an assumed
proton density of one mole per cm®. [NB: Thisis, of course, the same as the reaction
rate per proton per second for an assumed neutron density of one mole per cm?].
Rather surprisingly at first sight, this reaction rate is the same at all temperatures
between 10° °K and 10° °K. Actually this follows from our cross-section, Equ.(137) as
follows:-

For the temperature range of interest, ask may be neglected compared with unity
(strictly it is of the order of unity at 10°°K, but is negligible at 10° °K and below).
Thus, the term n,, reduces to the constant 42.2. Moreover, in this temperature range

the maximum thermal energies (1.5kT) are of order 0.13 MeV, and hence small
compared with the deuteron binding energy (2.22 MeV). Hence we replace B + W in
the numerator of Equ.(19) with B. Finally, since we are dealing with non-relativistic
speeds, the centre-of-mass total energy (W) is M v4/4 = Mv?%/2, wherev isthe relative
velocity of the incident proton and neutron. [NB: W is half the kinetic energy in the
‘lab’ frame, in which one of the nucleons is at rest]. Hence, with these
approximations, Equ.(137) becomes,

3
- B \2c 938

22 V2c ¢
€ _22% (ub) (139
469.46) y =22y (ub) (139)

where ub = microbarns, and one barn = 1022 m? = 100 fm?. Thus, (139) gives,
v<52"ap =6.60x10° m3/sec (140)
Now the reaction rate per neutron per second is given by p vo . where p isthe

proton number density. Thus, for an assumed proton density of one mole per cm® (i.e.
p,=6.03x 107/ (10 m)° = 6.03 x 10”° m*), Equ.(140) gives the reaction rate to be
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6.60 x 102 x 6.03 x 10%° = 4.0 x 10* per second. This compares well with the reaction
rate given by Hoffman et al of 4.37 x 10* per second (per mole/cm®), confirming that
our derivation appearsto bereliable.

Strictly, we have not yet checked that the ‘E’ capture cross-section is negligiblein
comparison. For the approximations introduced above, Equ.(138) reduces to,

e 208
@ 137

]

(4.31fm)2x0.024% - 0.068% (fm)? = 680% (ub) (141)

Unlike the ‘M’ cross-section, (139), the ‘E’ cross-section increases with energy (or
speed, v). Hence it produces an energy dependent reaction rate. For the assumed one
mole per cm?® particle density the reaction rate due to the ‘E’ mechanism is given for a
range of temperatures below,

T (°K) v (m/s) v/c GcEap (ub) Reaction ratedueto ‘E’
mechanism only (/sec)
10° 5x 10° 0.0166 11 3,300
10° 1.6 x 10° 0.0052 35 330
10’ 5x 10° 0.00166 1.1 33
10° 1.6x 10° | 0.00052 0.35 33

These compare with the ‘M’ mechanism reaction rate of 40,000 /sec, derived above,
and hence are confirmed to be negligible at all but the highest energy considered
where the contribution of the ‘E’> mechanism is ~8%. At this highest energy the total
(‘E” + ‘M) reaction rate agrees with Hoffman et al almost precisely (43,300 /sec).

A further check on the capture cross-sections may be carried out at very low energies,
corresponding to room temperature, i.e. 0.025 eV, for which v/c = 7.3 x 10°®.
Equ.(139) then givesthe ‘M’ capture cross-section as 0.30 barns, in agreement with
Evans. In stark contrast, the ‘E” mechanism cross-section from Equ.(141) isonly

5x 10° barns, again in agreement with Evans (P.338, ‘Problem’ answer).

Finally, we check the photodisintegration cross-sections against the results plotted in
Evans Chapter 10, Figure 4.1. The results are obtained in straight forward fashion
from Equs.(130, 131). We must only notice that the k-dependence in the ny termin
Equ.(130) leads to the ‘M’ capture cross section rising to a maximum very steeply at
modest nucleon energies. We find this maximum to lieat W ~ 0.07 MeV (which
appears to be twice that indicated by Evans, i.e. 37 keV). The cross sections agree
well with Evans’ graph, thus:-
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photon energy | total CoM product nucleon st (millibarn)

(B+W), MeV energy (W), MeVv
2.3 0.076 0.11
2.5 0.276 0.58
3 0.776 1.57
4 1.776 2.30
4.44 2.216 2.34
6 3.776 2.11
8 5.776 1.68
14 11.776 0.91

(maximum cross-section shown in bold)

photon energy | total CoM product nucleon Gg/ils (millibarn)

(B+W), MeV energy (W), MeV

2.229 0.005 0.28
2.234 0.01 0.37
2.244 0.02 0.47
2.254 0.03 0.52
2.264 0.04 0.54
2.274 0.05 0.550
2.294 0.07 0.558
2314 0.09 0.551
2.334 0.11 0.538
2.354 0.13 0.523
2424 0.2 0.47

3 0.776 0.24

6 3.776 0.06

(maximum cross-section shown in bold)

Having established that this method of calculation givesreliable results for the
p+n< D+y cross-sectionsin this universe, we are confident to go forward in

Appendix A4 to consider how the same approach may be modified to give the cross
sections for all two-nucleon reactions in a universe with a stronger nuclear force.

Specifically we shall be interested in the cross sections for p+p <3 He+y . Before
looking at the diproton production rate, however, we shall first adapt the method to
estimate the rate of the reaction p+ D —3 He+y in Appendix A3.
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