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Appendix A2 - Derivation of the Neutron-Proton Capture Cross-
Sections In This Universe  

1. Introduction 
In this Appendix we derive the cross-section for neutron capture on a proton (or vice-
versa) and the closely related cross-section for photodisintegration of a deuteron into a 
neutron and a proton. These reactions may be written Dnp . The derivations 
are carried out so as to demonstrate that the resulting formulae are equally applicable 
in an alternative universe in which the strong nuclear coupling constant, gs, has a 
different magnitude.   

The method is based on evaluating explicitly the relevant Schrodinger wavefunctions, 
for both free and bound states. Matrix elements of appropriate interaction 
Hamiltonians are calculated between such states. Fermi s Golden Rule is then used to 
translate the matrix element into a cross-section. Cross-sections are derived for both a 
magnetic dipole interaction, in which the magnetic field of a photon couples with the 
magnetic moment of a deuteron, and also for an electric dipole interaction, in which 
the electric field of the photon couples with the charge of the proton.   

The resulting cross-sections are compared with standard formulae from the literature. 
Numerical results are also given. The magnetic dipole cross-section is generally 
dominant.  

The effect of a change in the strength of the nuclear force is manifest in the cross-
section equations via the deuteron binding energy, B. Some caution needs to be 
exercised when employing these formulae since, if gs is increased sufficiently (that is, 
by more than ~10%), the deuteron will have a stable singlet state as well as the usual 
triplet state (as shown in the Critique of the Cosmic Coincidences, Chapter 9B). 
Hence, the cross-sections associated with the singlet deuteron state would also be 
required for such hypothetical universes. The total capture cross section in these 
universes, for unpolarised nucleons, would be the sum of the singlet and triplet cross-
sections.  

In cases for which gs is increased sufficiently (namely by more than ~10%), the 
proton-proton capture cross section can be evaluated using essentially the same 
methods, as can the diproton photodisintegration cross-section. This will be dealt with 
in Appendix A4. By way of a preview, it will be shown in Appendix A4 that, because 
we are dealing with identical particles in this case, the p-p capture cross-section is 
many orders of magnitude less than that for n-p capture. This is because the dominant 
contribution to n-p capture, via the coupling of the magnetic field to the spin, is zero 
for identical particles. Moreover, even the far smaller electric dipole contribution to  
n-p capture is zero to first order in perturbation theory for the p-p system. Hence, p-p 
capture proceeds only via a quadrupole interaction, which is much weaker than the 
dipole interactions. The demonstration that the diproton production rate is slow is our 
ultimate objective. The present Appendix serves primarily as a confirmation that our 
methodology provides reliable results in this universe.    
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2. The n-p System: The Schrodinger Solutions and Their Properties 
The cross sections will depend upon matrix elements between wavefunctions 
representing the initial and final states of the two nucleons. We shall be concerned 
exclusively with non-relativistic nucleons of just a few MeV energy or less. We shall 
thus use the Schrödinger equation with a square-well nuclear potential, depth V0 and 
radial width a . For the n-p system there is no Coulomb interaction, so the 
Schrödinger equation is simply,   

0V else   a,rfor     VV  e      wher,EV
m2 0

2
2

  

(1)  

In Equ.(1), the wavefunction )r(  represents a neutron-proton pair, with r  being the 

relative position vector, and m is their reduced mass, i.e. )MM/(MMm pnpn . 

The energy E is the total energy of the two nucleons (excluding their rest mass) in the 
centre of mass system, i.e. twice the energy of each nucleon (in the approximation 
that np MM ).  

We shall need only bound S states and free S and P states. In the actual universe, the 
only bound deuteron state is indeed the S state. When we consider a stronger nuclear 
force, the binding energy of this triplet S state will increase. If it is increased enough, 
the first new bound state to appear will be the singlet S state. It can be shown that the 
triplet P (L = 1) state does not arise until the nuclear force is considerably stronger 
than that necessary to bind the singlet S state. An even greater nuclear force is 
required to bind the singlet P state. Thus, as far as bound states are concerned, we are 
only interested in S states.  

However, a free neutron/proton pair can combine to form a deuteron from an initial S 
or P state. Conversely, a deuteron can photodisintegrate into a free neutron-proton 
pair in either an S or a P state. Thus, we need to examine both the S and P states of 
free nucleons.  

2.1 Neutron-Proton S States  

2.1.1 Bound Neutron-Proton S States 
The relevant solution to Equ.(1) may be shown by substitution to be,   

arfor       ,/B)-2m(V     ,r     ,
sin

a 0i
i

i
i

  

(2)   

arfor                 ,/2mB      ,r       ,
e

a e
e

e

e

  

(3)  

where B is the binding energy (i.e. this solution has energy eigenvalue E = -B, so that 
E < 0 but B > 0). The coefficients 

 

and  are defined so as to be real. The subscripts 

i and e represent inside and outside in obvious fashion. Note that the functions 
appearing in Equs.(1,2) are the spherical Bessel function of order zero )(j io  and the 
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associated Hankel function of the first kind, )i(h e
)1(

0 . The Neumann function n0 is 

excluded from the interior solution by the requirement that the wavefunction be finite 
at the origin. Similarly, the Hankel function of the second kind is excluded from the 
exterior solution since it involves a positive exponent, and hence is not normalisable.  

The coefficients ai and ae appearing in Equs.(2,3) are found, together with the binding 
energy quantisation condition, by requiring that the wavefunction and its first 
derivative are continuous at r = a, plus the requirement that the wavefunction be 
normalised. Continuity of the wavefunction immediately leads to,   

a   and   a  re,       whe,
e

a
sin

a ei

    

(4)  

Continuity of the gradient of the wavefunction is easily shown to lead to the quantised 
binding energy condition,   

cot      (5)  

From the definition, Equ.(4), for a given potential well the solution is constrained to 
lie on a circle in  space, i.e.,    

/mV2a   re       whe 00
2
o

22

    

(6)  

Thus, Equs.(5,6) together define discrete possibilities for the binding energy, B. If 
2/0 there is no bound state. If 2/32/ 0  there is exactly one bound 

state, whereas for 2/52/3 0  there are exactly two bound states, etc1.   

We can now find the coefficients ai and ae explicitly by requiring that the 
wavefunction be normalised, i.e. requiring that,      

1dV
2

E all 3

      

(7)  

The contributions to the integral are evaluated separately for the interior (r < a) and 
exterior (r > a) parts, giving,   
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1 That is, counting only S waves of the same net spin. The states enumerated correspond to different 
principal quantum numbers, n. 
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Note that the dimensions of ,  are 1/length, and that of the squared-coefficients ai
2 

and ae
2 is 1/volume. The coefficient ae may be eliminated from Equ.(9) in favour of ai 

with the aid of Equ.(4). The sum of (8) and (9) may be simplified with the help of the 
identity,     

a

2

2sinsin 2     

           (10)  

from which it follows from (7) that,     

/11a2
a

2
2

i                (11)  

from which the external coefficient ae may also be found using Equ.(4) if required. 
Incidentally, we note that Equ.(4) shows that the two coefficients ai and ae are in 
phase, and hence may both be taken as real, so we can drop the modulus sign.  

2.1.2 Orthogonality of Bound States of Different Energy 
For a given potential function, V(r), there is a general theorem that any two solutions 
of Schrodinger s equation with different energies are orthogonal (even if they have 
the same angular dependence). This orthogonality is important to arguments which 
will be deployed for the proton-proton system later. Hence we carry out a check that 
the solution of Equs.(2,3) respects orthogonality. Thus, we intend to show that,     

3E all

2
*
1 0dV                (12)  

where the subscripts denote solutions with different binding energies. The internal 
part of this integral is,   
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and the external part is,    
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(the latter step uses Equ.4). Equ.(13) is easily simplified to give, 
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           (15)  

Using Equ.(5) to write sin/cos , Equ.(15) becomes,    
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However we have that,    
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         (17a) 
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         (17b)  

Hence, from Equs.(14) and (16) we see that ei , in other words the total 

integral of Equ.(12), ei , is zero. Thus, the two bound-state wavefunctions are 

orthogonal as claimed. QED.  

2.1.3 The Zero-Range Approximation For Bound States 
It will be useful later in simplifying the algebra to develop a zero-range 
approximation in which 0a  and 0V  in such a manner as to ensure that the 

binding energy, B, remains constant. Contrary to what one might initially guess, this 
does not

 

mean holding the combination 0
2Va constant. If this were done, the 

dimensionless parameters  and  would remain constant, which would lead to  
 = /a diverging as 1/a and hence B diverging as 1/a2. Instead, it is clear that  must 

reduce towards zero as a does, so that  = /a remains constant, and hence B also 
remains constant. By virtue of the quantisation relation, Equ.(5), it follows that  must 
approach /2. (We confine attention to the lowest lying bound state. We shall not be 
considering higher lying bound states of the same spin to arise. They would exist only 
if gs were increased by a factor of 3). We check that this zero-range approximation 
continues to respect the normalisation of the wavefunction as follows:-  

By using  = /2 and  = /2a in Equ.(8) we get the interior integral to be,      

2
i

32
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i aa
8
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           (18)  

Noting that Equ.(9) may be written in terms of the interior coefficient, using Equ.(4), 
and substituting  = /2 and  = /2a gives,     
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Thus, the ratio of the interior to exterior integrals ei / is of order a

 
 and hence 

tends to zero as a does. Thus, in the zero-range limit, the nucleons tend to lie 
entirely outside the range of the nuclear force. The exterior integral alone must 
therefore tend to unity, 1e , which gives,      

2
2
i a8

a

     

           (20)  

The same result is obtained by considering the limit of Equ.(11). Finally, Equ.(4) is 
used to give the exterior coefficient in the zero range approximation, using  = /2 
and 0a , giving,      

2
a

3
2
e                (21)  

In fact, we have already found the coefficients for the bound 3S state without recourse 
to the zero-range approximation, i.e. Equ.(11). It will be required later to know the 
zero-range approximation for the coefficients to second order. The second order 
approximations for  and  will be discussed in Section 2.2.2 and are given in 
Equ.(31). The corresponding approximation for /sin  is given by Equ.(64a), and 
will be needed in Equ.(4). Thus, we find the second order approximations for the two 
coefficients using Equs.(11) and (4) to be,    

22
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8
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a     ,a1

a8
a           (20b,21b)  

2.2.1 Free Neutron-Proton S States 
We now consider the positive energy S-state solutions of Equ.(1). These may be 
checked by substitution to be,  
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arfor         ,/2mEk      ,kr       ,
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e
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           (23)  

Note that we have used the same symbols i and  for the interior solution as for the 
bound state, since the expressions are algebraically identical. However, the energy, E, 
is positive here rather than negative. Thus, the numerical values of  cannot be the 
same. The exterior solution is now oscillatory (i.e. wave-like) and consists of two 
terms  since both tend to zero at infinity. The three coefficients in Equs.(22, 23) can 
be found, in principle, using the requirements of continuity of the wavefunction and 
its first derivative at r = a, plus the normalisation condition. The continuity conditions 
are,  
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cos
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a
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a ecesi    where ka   and   a

  
           (24) 

2ec2es2i

cossin
ka

sincos
ka

sincos
a             (25)  

Thus, in principle, the two exterior coefficients may be found in terms of the interior 
coefficient from Equs.(24, 25). Normalisation is now considered. The interior integral 
is algebraically identical to Equ.(8), i.e.,   

2

2sin
a

a2
dV

2

2

i2

ar

i              (26)  

The exterior integral is,     

2

a

eces
2

e
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kr

krcos
a
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krsin
adrr4

  

           (27)  

Note that the domain of the exterior integral is finite, up to some large rmax. This is 
necessary in order to make the integral (27) finite. It means that the coefficients of the 
free wavefunction can only be found in terms of this arbitrary normalisation 
dimension. This is always the case with free (wave-like) states. Ultimately this 
arbitrary normalisation dimension will cancel out from any expression for a 
physically measurable quantity (usually by cancellation against the density of states 
term). Whilst rmax is arbitrary, it must be very large compared with all the 
characteristic dimensions of the problem (otherwise confining the state to a small 
finite volume would have physically measurable consequences). Thus we require,  

0maxmaxmaxmaxmax k/1r     and     /1r     and     /1r     and     k/1r     and     ar

 

where k0 in the last inequality is /mV2 0 . As an illustration consider the deuteron. 

We have a ~ 2fm, 1/k0 ~ 1fm  (V0 ~ 37 MeV), 1/  ~ 4.3fm (B = 2.22MeV). If we 
consider nucleon kinetic energies of (say) 1MeV, 0.1Mev and 0.01MeV then 1/k is 
respectively 6.4fm, 20fm and 64fm. The size scale 1/  is virtually the same as 1/k0 in 
the energy range of interest, and is not important anyway since a sets the scale for 
the interior solution. Thus, in the energy range of interest it is 1/k which forms the 
largest size scale associated with the nucleons, and our normalisation region must be 
chosen with rmax >> 1/k. There is one further size scale, namely the wavelength of a 
photon with energy sufficient to disintegrate the deuteron, i.e.  < hc/2.22MeV = 
89fm.    

Returning to the exterior integral of Equ.(27), the exact integration yields an 
expression which involves the difference between trigonometric functions evaluated 
at maxmax,e kr22 and ka22 . Considerable simplification results if we choose 

these two parameters to differ by an integral multiple of 2 , ie.,  
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integer n       wherenkakrmax

   
           (28)  

(of course, n will need to be a very large integer because rmax >> a). Equ.(27) then 
becomes,     

araa
k

2
max

2
ec

2
es2e

    
           (29)  

Thus, in principle, having found the two exterior coefficients in terms of the interior 
coefficient using Equs.(24, 25), the latter is found explicitly by adding (26) and (29) 
and equating to unity. The algebra appears rather forbidding. Instead we consider this 
procedure only in the zero-range approximation in the next Section.  

2.2.2 The Zero-Range Approximation For Free S States 
The zero-range approximation was introduced in Section 2.1.3. We use the same 
approximation here except that we now need to retain higher order terms. This is 
necessary to ensure that orthogonal states remain orthogonal in the approximation 
used. Thus, proceeding immediately to the limiting values 2/  and 0 , for 
example, is too crude. We require expressions which retain terms of order a .  

Despite the fact that we are dealing here with free states, recall that the zero-range 
approximation is only defined with respect to a specified binding energy, B. This is 
because the limiting process 0V ,0a  is defined by the requirement that B be 

constant. Hence, derivation of the order a term in  requires consideration of the 

bound-state quantisation condition cot . The value of  to first order is, 
trivially, a . The derivative of the quantisation condition gives the size of the 

variation in  for a given variation in , thus,     

d.eccoscot.dd 2              (30)  

Thus, near the limiting value /2 ,0 the cot term is zero and the cosec term is 

unity, and the small change in  is just  itself, giving,    

2

a2
  and  a

2

2
  hence and  

2
d            (31)  

We now use (31) to approximate the LHS of Equs.(24,25), and also retain only the 
first terms of the trig functions on the RHS, giving,  

ecesi2
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         (32a) 
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k
aa1

4

   

         (32b)  

where, 2/81 . Expressing the RHS of Equs.(32a,b) as a matrix, the inverse of 

the matrix is (retaining leading terms in  in each component), 
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k/3/

k/3/1
23

2     

          (33)  

Multiplying the above matrix by the column vector formed by the LHS of 
Equs.(32a,b) thus gives, retaining only leading terms in a ,     

ies aa
2

a

     

         (34a)    

iec kaa
2

a

      

         (34b)  

We can now find the normalisation integrals explicitly. Using Equs.(34a,b) and 
/2a and 2/ , Equ.(26) gives the interior integral as,     

2
i

3
i aa

8

      

           (35)  

which is the same as the interior integral for bound states in the zero-range 
approximation, i.e. Equ.(18). However, Equ.(29) gives the exterior integral as,     

2
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k
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           (36)  

and hence differs from that for the bound state, Equ.(19), which does not involve a 
finite normalisation radius, rmax. As before we see that the ratio of the integrals is 

0)a(O/ ei . Hence, the normalisation condition is 1e which gives,     

2
max

2
i arE/B18

a

    

           (37)  

from which the exterior coefficients may be found using Equs.(34a,b). Thus, as we 
found also for the bound states, in the zero-range limit, the nucleons tend to lie 
entirely outside the range of the nuclear force.  

2.2.3 Orthogonality of Free and Bound States: Zero-Range Approximation 
The zero-range approximation has been introduced to facilitate calculation of the 
matrix elements which are needed to compute the n-p system cross sections. It is 
therefore essential that states which are truly orthogonal also have 021   

when evaluated using the zero-range approximation. Were this not the case we could 
have little faith in the required capture/disintegration matrix elements evaluated using 
this same approximation. In this Section we shall check that the zero-range 
approximation does indeed yield 021  between a bound state ( 1) and a free 

state ( 2). The interior integral is identical to Equ.(13), i.e.,  
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Substitution of the zero-range estimate of the coefficient a1i from Equ.(20), together 
with a2/12  gives,  
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The exterior integral consists of two parts,    
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where,   a
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and,   a
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           (43)  

and where the integrals (42,43) have been evaluated by assuming the limit maxr . 

In the zero-range approximation ( 0a ) these become,   

22c22s k
     and     

k

k  
           (44)  

Thus, substituting Equs.(44) into Equs.(40,41), together with Equs.(34a,b) for the 
exterior free state coefficients, gives,    
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and,  es22i2e122i2
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           (46)  

Thus, in view of the interior integral once again tending to zero in the zero-range 
approximation, we have 0eces21  by virtue of Equs.(45,46). QED.   
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2.3 Neutron-Proton Bound-Free Matrix Element: S States 
In this Section we use the results of the previous Sections to find the matrix element 

)S()S( 1
free

3
bound  in the zero-range approximation. Note that if the bound and 

free states were in the same spin state (i.e. both triplet or both singlet), then this 
matrix element would be zero, as shown in Section 2.2.3, above. The reason why 
orthogonality does not apply when the spin states are different is that the nuclear 
potential differs for the two spin states. Thus, the free and bound states are solutions 
of different Schrödinger equations. We may summarise the results of the preceding 
sections for the wavefunctions as follows,  
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(2)  
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e
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(3)  

where, V0 represents the triplet nuclear potential and B the corresponding binding 
energy. In the zero-range approximation we have,    
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2
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                 (20, 21)  

Similarly, for the free singlet state,  
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e
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e
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1
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where the tildas indicate that the free singlet state parameters differ from those of the 

bound triplet state. In this case, 0V
~

 represents the singlet nuclear potential, and hence 

)VV
~

00 .  In the zero-range approximation we have,     
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~2

a
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2

a

      

         (34d)    

2
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2
i

arE/B
~

18
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         (37b)  

where B
~

 represents the binding energy corresponding to the singlet potential 0V
~

. 

This formulation of the zero-range approximation for the free singlet state is fine 

 

provided that a singlet bound state exists (and hence B
~

is defined). Unfortunately, a 



Rick s Cosmology Tutorial: Appendix A2 - Derivation of the Neutron-Proton Capture 
Cross-Sections In This Universe  

Page 12 of 30 

bound singlet state does not exist in this universe. In this case we may identify the 

parameter /B
~

m2
~

with the reciprocal of the singlet scattering length, i.e. 

a/1
~ 1 . Because there is no singlet bound state, the singlet scattering length is 

negative, and hence so is 
~

. However, B
~

remains positive.  

[Aside: That 
~

 can be identified with the reciprocal of the scattering length may be 
established as follows. From standard scattering theory (e.g. Evans P.319), in the limit 
of zero energy the external wavefunction may be approximated as,     

r

a
1ttancons:)0k(LIM
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           (47)  

But Equ.(23b) gives the external wavefunction in the zero energy limit as,     
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a
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           (48)  

and with the help of Equs.(34c,d) this becomes,     

r
~
1

1a~a
~2

:)0k(LIM i             (49)  

Equating (47) and (49) yields a/1
~ 1 , as claimed].  

We can now calculate the required matrix element,  
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where,   
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Substitution of the zero-range estimates a2/~  gives,  

0a~aa
8

0sin
a

a
a2

a~a2 ii
3

2

iii

 

                       (52)  

The interior integral is thus negligible in the zero-range approximation because the 
interior coefficients diverge only as 1/a, see (20) and (37b).  
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The exterior integral is,    

drr4
kr

krcos
a

kr

krsin
a

r

e
a 2

r

a

eces

r

ee

max

  
           (53)  

Apart from the actual values of the coefficients, this integral is identical to the sum of 
Equs.(40) and (41), and may be evaluated in the zero-range approximation using 
Equs.(44). Thus we get,    

22ec22es
e

e k
a

k

k
a

k

a4   
           (54)  

We now substitute the zero-range approximations for the exterior coefficients from 
Equs.(21, 34c,d) giving,    

22

2
1

i

2222
i

2
1

3

e

k

~

2
a~a8     

k
k

k

k~a~a2

2k

4 

         (55a)  

and  e
1

free
3

bound )S()S(

     

         (55b)  

From Equ.(55) we can see that the reason why )S()S( 1
free

3
bound  is not zero is 

that 
~

 

is non-zero, due to the different nuclear potentials in the two spin states. 

On the other hand, if the spin states had been the same, and hence 
~

, Equ.(55) 
reproduces the required orthogonality demonstrated previously. Using Equ.(37b), the 
squared matrix element is,  

max

2

22

2
1

free
3

bound
rE/B

~
1k

~
4)S()S(

  

           (56)  

2.4 The Free Nucleon-Nucleon P State  

2.4.1 The (Free) P State Solution of the Schrodinger Equation 
The solution is given by Equ.(57) and Equ.(58) below;  

a   ),EV(m2    a,  ,     where,eP)(ja  ,ar For 0
2

i
imm

1i1i           

ak   ,mE2k    a,k  ,     where,eP)(na)(ja  ,ar For 2
e

imm
1e1ece1es

 

where j1 and n1 are the two independent spherical Bessel functions of first order, i.e.,  
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cossin
)(j

21  

sincos
)(n

21             (59)  

(the conventional definition of n1 has the opposite sign to ours). In Equs.(57,58) we 
have used an un-normalised form of the spherical harmonics,    

sinP       ,cosP 1/
1

0
1                (60)  

We shall be concerned only with the m = 0 solution, since the m = +/-1 solutions have 
zero electric dipole matrix element with the bound S-state by virtue of the azimuthal 

angle dependence, i.e. 01/m),free(Pcosr)bound(S
33 .  

The derivatives of the spherical Bessel functions may be written,   

cossin
2

cos
2)(n     ,

sincos
2

sin
2)(j

231231         (61)  

The continuity conditions at r = a are,   

)(na)(ja)(ja 1ec1es1i

  

)(nka)(jka)(ja 1ec1es1i        (62)  

2.4.2 Zero-Range Approximation For The Free 3P State 
To give a non-zero electric dipole matrix element for a transition between the ground 
triplet state of the deuteron and a free P-wave state requires the P-wave also to be a  

spin triplet, i.e. 3P. [This is because 0)free(Pcosr)bound(S
13  because the spin 

states are orthogonal and the electric dipole interaction does not cause a spin flip]. 
Hence, in deploying the zero-range approximation it is the triplet binding energy, B, 
which is relevant. (This contrasts with Section 2.2.2 in which the free singlet S state 
was considered, and which therefore involves the singlet binding energy, B ). Thus, to 
recap, the zero-range limiting conditions are,   

2

a2
/a     ,a

2

2
     0,ka     ,0a            (63)  

Hence, we find the limiting forms,   

 

)a(Oa
2

a
4

1
2sin 32

22

  

              (64a)   

)a(Oa
8

1
2sin 2

2

2

2

     

         (64b)   

)a(Oa
2

a
12

1
2sin 32

22

3

3

   

         (64c)  
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)a(Oa

2cos 2
2

        
         (64d)   

)a(Oa
8

1a
2cos 3

2

3

2

     
        (64e)  

where 8634.31/48 2 , so that,   

1894.0
8

1  re       whe),a(Oa1
4

)(j
2

2
21

 

           (65)   

)a(Oa
4

a
12

1
2

)(j 32

221

    

           (66)  

where 4446.0
2

120192
24

.   

Similarly, taking the limit 0)a(O  gives,   

)a(O
3

)(j 3
1

  

)a(O
2

11
)(n 2

21

  

           (67)    

)a(O
3

1
)(j 2

1

  

)a(O
4

2
)(n 3

31

  

           (68)  

Hence, the continuity equations (61,62) become, in the zero-range approximation,    

ecesi2
a

2

11
a

3
aa1

4

    

         (69a)    

ec3esi
2

22
a

4

k2
a

3

k
aa

4
a

12
1

2

 

         (69b)  

Solving Equs.(69a,b) gives,    

i
32

2eci
2

es a)a(O
4

3

1
a       ,a)a(O

~1
a      (70a)  

where,  
22

2

2

2 k
2735.0072.0

k

1224

3

1~
     (70b)  

We can now determine the magnitude of the coefficients in the zero-range 
approximation by enforcing normalisation. In view of our earlier results we anticipate 
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that the interior integral will be negligible in this approximation. It will equal some 

numerical constant, Ai, which could be found by explicit integration, times 32

i aa , 

i.e.,      

32

iii aaA

    
           (71)  

 The exterior integrals are,   

maxmax r

a

22
1

2

es

r

a

222
1

2

eses drr)kr(ja
3

4
drrd2cos)kr(ja           (72a)  

maxmax r

a

22
1

2

ec

r

a

222
1

2

ecec drr)kr(na
3

4
drrd2cos)kr(na         (72b)  

It is clear on dimensional grounds that, in the zero-range limit, we get,    

2
max

42

iesmax
22

eseses a/rkaA
~

rkaA

   

         (73a)    

2
max

2

iecmax
22

ececec araA
~

rkaA

   

         (73b)  

where the second form has used the zero-range limits for the coefficients, Equ.(70a). 
The sum of (71), (73a) and (73b) must be unity. Hence it is clear that ai must be of 
order a as 0a , which makes the term 1es  and the terms 0, eci . In fact 

the latter integrals are of order a5 and a4 respectively, and hence are negligible even as 
a first, second or third order correction. We now find the coefficient Aes by explicit 
integration of Equ.(72a). We have,   

dcos
cossin2sin

k

1
drr)kr(jI

maxmax

2
2

2

3

r

a

22
1es            (74)  

With the help of Gradshteyn 2.642(5), the first integral is found in the limit that 

max and 0  to be the same as,      

2
dx

x

xsin

0

     

           (75)  

By transforming to the integration variable x = 2 , the second integral in (74) is also 
found to equal (75), and hence cancels with the first. To evaluate the third integral we 
assume as we did in Section 2.2.1 that the range max  to corresponds to a whole 

number of wavelengths. Hence, the third integral is simply ( max- )/2. [Incidentally, 
this assumption also means that the density of states must be the same for the P-wave 
as for the S-wave]. Thus, we get 3

maxes k2/I

 

to an accuracy of O( ) and hence,  
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2

es2
max2

es3
max

es a
k3

r2
a

k3

2
                (76)  

and equating this to unity gives,     

max

86
2
ec

max

42
2
i

max

2
2
es r2

ka3
a     ,

r2

ka3
a     ,

r2

k3
a

 
           (77)  

[where ai and aes are positive, but aec is negative]. It is clear that we need be concerned 
only with the exterior j1 (aes) term from now on. We will see below that the second 
order correction is important as regards the coefficient of the bound state. However,  
the second order term is not important for the free state. Accounting for the finite size 
of , the first two integrals in (74) do not exactly cancel, but rather contribute a value 
-  + O( 3). Since this has been ignored we need to add  to k3Ies to correct it. 
However, the third integral also contributes an amount - /2. Hence, the overall 
correction to k3Ies is to add /2 to it. Thus we get,   

max
3

max

max
3

max
33

max
es r

a
1

k2
1

k2k2k2
I  

and because the correction term, linear in a , involves the ratio a/rmax, it is negligible.  

2.4.3 Bound 3S  Free 3P Dipole Matrix Element 
The above development of the free 3P state has been motivated by the requirement to 
calculate the electric dipole matrix element,   

)(cos)(
3

0
3 freePrEHboundS electric

  

           (78)  

We note in passing that the 3S(bound) 

 

1S(free) electric dipole matrix element is zero 
(the spin states are orthogonal, and also the angular integration in the spatial matrix 
element is zero). As for 3S(bound) 

 

1P(free) matrix element, the spatial part is non-
zero, being identical to that for the 3P state. However, the spin states are orthogonal 

 

and, of course, the electric interaction Hamiltonian does not cause a spin flip. Hence, 
in this Section we calculate the matrix element (78) only.   

It turns out that, unlike the 3S-1S magnetic dipole transition, it is important to work to 
second order in the zero-range approximation. We have seen, above, that the interior 
and exterior n1 coefficients are negligible, hence we need consider only the exterior j1 

term. The matrix element, (78) is thus,  

~
k3

aa4
drkrcoskrkrsine

k3

aa4
                        

drr).(cosdcos2
kr

krcos

kr

krsin
a

r

e
aPcosrS

s2
ese

r

a

r
2

ese

22
r

a
2es

r

e

33

max

max 

           (79)  
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where integration by parts gives,
22

cs
2a

k

kkekasinkkacosak~  and the 

integrals s and c are given by Equs.(42,43). The zero-range approximation for these 
integrals, retaining terms linear in a , are,    

);a(Oa
k

     );a(O
k

k 2
22c

2
22s

 

           (80)    

)a(O
k

kk~ 2
222

22

     

           (81)  

The important thing is that the correction terms linear in a cancel from both 
~

 

and s , and hence there is no linear correction term to the matrix element (79) from 

the integral itself. We have also seen from Section 2.4.2 that there is no linear a 
correction term in the free state coefficient, aes. Hence, the linear a correction arises 
entirely from the correction to the bound state ae coefficient, as given by Equ.(21b).  

Substituting Equs.(80,81) into (79) gives,  

222

ese33

k3

kaa8
PcosrS

   

           (82)  

and substituting for the coefficients from Equ.(21b) and Equ.(77) gives,  

a
8

1
rk3

k16
                            

a
8

1
2r2

k3

k3

k8
PcosrS

2

max

422

4

2

3

max

2
2

222

233 

           (83)  

noting that the matrix element has dimensions of length.   

3. The Cross Sections In Terms Of The Matrix Elements 
Schiff describes the derivation of Fermi s Golden Rule #2 . We envisage a bound 
state being exposed to electromagnetic radiation so as to induce photodisintegration. 
Schiff s Equ.(35.14) gives the probability of a given composite object (e.g. a 
deuteron) disintegrating per second (w) in terms of the density of final states per unit 
energy range ( dE/d ) and the relevant matrix element, i.e.,     

2

outin H
dE

d2
w

   

         (100)  

where H is a time independent interaction Hamiltonian (energy). [NB: Schiff s is 
our dE/d ]. Schiff s derivation of Equ.(100) requires that the time independent 
interaction Hamiltonian is related to the actual interaction Hamiltonian by, 
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tsinH2)t(H outinoutin

  
         (101)  

where  is the (angular) frequency of the radiation. The salient feature of Equ.(101) is 
the factor of 2.  

3.1 Density of States 
In this Section we derive expressions for the density of final states. Recall that we are 
envisaging the photodisintegration of a bound state into a pair of nucleons, so the final 
state is that of a pair of free nucleons.   

Density of S States

 

Recall that, in order to simplify the algebra resulting from normalisation, we have 
already effectively assumed a discrete set of free states  see Equ.(28). These states 
are equally spaced along the k-axis, with a spacing of maxmax r/)ar/(k , the 

latter applying in the zero-range approximation. Thus the number of states per unit k 
range is one per k . Since the (total) energy of the pair of nucleons is given by 

m2/kE 2 , where m is the reduced mass, we have m/kdkdE 2 . Thus, the 
density of states per unit energy interval is,     

k

mr

k

m

k

1

dE

dk

dk

d

dE

d
2

max
2

  

         (102)  

Density of P States

 

This needs checking, but I suspect it will be the same as Equ.(102).  

3.2 Photodisintegration Interaction Hamiltonians 
We shall work only within the approximation that the wavelength of the 
electromagnetic radiation is long compared with the size of the region within which 
there is a significant change of finding the nucleons in the bound state. Recalling that 

a  is roughly 2fm, and that the decay length in the exterior region is mB2//1

 

= 4.3fm for the deuteron, we require radiation with wavelength greater than about 
10fm, i.e. photon energies less than about 20MeV. Since it requires a photon energy 
of 2.224MeV to disintegrate a deuteron, we are implicitly considering the specific 
photon energy range 2.3MeV  20MeV, or so.  

Thus, we can consider the electric and magnetic fields comprising the electromagnetic 
radiation to be uniform over the size scale of interest. The electric component of the 
interaction energy is thus,     

cosreENzeENH 0p0pelectric            (104)  

where, in line with Equ.(101), 0E hence and H are the amplitudes of the radiation 

wave. We imagine (104) to be the potential energy loss, or gain, if the nucleons 
undergo a relative displacement by z in the uniform electric field E0. The polar z 
direction is therefore the polarisation (E-vector) of the radiation. The charge e is 
taken as positive since we are dealing with a proton. Finally, Np is the number of 
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protons. Thus, Np = 1 for the deuteron, Np = 2 for the diproton, and Np = 0 for the 
dineutron. Thus, there is no electric dipole interaction for the dineutron, but the 
electric dipole interaction Hamiltonian is twice as great for the diproton as for the 
deuteron.  

The magnetic field couples to the magnetic dipole moments caused by the nucleon 
spins. Denoting a Pauli-type operator by , representing the spin in some fixed 
Cartesian direction (but with eigenvalues +1 and 1) we may write the magnetic 
moment operator for a two nucleon system as,     

p
2211 M2

e
agM

    

         (105)  

where 2,1 are 2.7934 and 1.9135 for the proton and neutron (but note that particles 1 

and 2 may both be neutrons or both protons, or one of each). Also note that the 
gyromagnetic ratios are twice the 2,1 , because the nucleon spin is .2/  The 

magnetic dipole interaction Hamiltonian operator may thus be written,     

0magnetic BagMH

     

         (106)  

where the direction of the magnetic moment operator is chosen to align with the 
applied magnetic field (or, generally, the dot product is taken). Note that (106) again 
involves the amplitude of the magnetic field, in line with (101). Thus, we see from 
Equ.(100) that the magnetic dipole cross-section depends on the matrix element,   

spin
outmagnetic

spin
in

spatial
out

spatial
inoutmagneticin HH          (107)  

where we have written the wavefunctions as a product of a spatially varying part and 
the spin part so as to illustrate that the magnetic dipole interaction involves only the 
spin part [because (106) is uniform in space  in the approximation that the photon 
wavelength is large compared with the size of the region within which the bound 
nucleons might be found]. The spatial matrix element between S states has been 
evaluated in Section 2. We now evaluate the spin matrix element.  

We denote by 21 , say, a state in which particle 1 has spin up and particle 2 has 

spin down, etc. By virtue of (106) we shall take the spin z direction to be the local 
magnetic field direction. So, for example, we would have,  

21
M2

e
21

M2

e
21agM

p
21

p
2211           (108)  

The states which are of interest are the eigenstates of the total spin operator. These are 
(see any standard text),   

2121
2

1
S  2121

2

1
0,T        (109a) 



Rick s Cosmology Tutorial: Appendix A2 - Derivation of the Neutron-Proton Capture 
Cross-Sections In This Universe  

Page 21 of 30  

211,T   211,T         (109b)  

where S and T stand for singlet and triplet respectively. We can now evaluate the 
spin matrix element in (107). We note firstly that we are only interested in the matrix 
elements for which the in and out states differ, i.e. one is singlet and the other triplet. 
The spin matrix element could be non-zero even for identical in and out spin states 
(specifically if the states are T,+/-1, but are zero for T,0 and S). However, the spatial 
matrix element in (107) would then be zero by orthogonality, as we have seen in 
Section 2. That is,     

0spatial
out

spatial
in

spin
out

spin
in

 

                    (110)  

We firstly note that the spin matrix element between a singlet state and a triplet state 
with non-zero azimuthal quantum number ( 0m ) is zero, i.e., 

         (111) 

0                                  

21212121
M2

Be

2

1
                                  

2121
M2

Be
21

2

1
                                  

S
M2

Be
1,TH

2121
p

0

p

0
2211

p

0
2211

spin
outmagnetic

spin
in

   

We are therefore left with the <singlet  triplet,m=0> matrix element as being the 
only one of interest. This is,           

         (112) 

21
p

0

2121
p

0

p

0
2211

2

p

0
2211

spin
outmagnetic

spin
in

M2

Be
                                  

21212121
M4

Be
                                  

2121
M2

Be
2121

2

1
                                  

S
M2

Be
0,TH

 

Thus we see that the spin matrix element of interest is proportional to the difference in 
the two particles magnetic moments, 21 . It follows that there will be no 
magnetic dipole transition for identical particles, or any particles with the same 
magnetic moment. Note, however, that we are working to first order in the 
perturbation, H , and have also ignored the spatial variation of the electromagnetic 
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field. Relaxing one or both of these approximations may result in a magnetic 
transition even between identical particles. This is beyond our scope.  

3.3 Electromagnetic Units And Photon Density 
Conversion of the transition probability rate of Equ.(100) to a cross-section requires 
the flux of photons corresponding to the interaction Hamiltonian H to be evaluated. 
Before doing this we recap some basic electromagnetic theory, together with the 
MKSA units. In the following, [x] denotes the units or dimension of x . The notation 
for units and dimensions will be,  

M = mass; L = Length; T = time; C = Charge 
kg = kilogram; m = metres; s = seconds C = Coulomb  

The ambiguity in C will not matter since they relate to the same quantity. Note, 
however, the important distinction between M and m.  

N = Newton = kg.ms-2;  J = Nm   
Fa (Farad) = C2J-1  He (Henry) = JC-2s2 = s2/Fa   

E = Electric field; Force = qE implies [E] = NC-1  

2
0r4

q
E  implies 0  = C2J-1m-1 = Fa/m:  27

0 c/104  Fa/m  

B = Magnetic field (flux density); Force = Bqv implies [B] = NC-1m-1s = kgC-1s-1  

2
0

r

rLI

4
B  implies 0 NC-2s2 = He/m: 70 10

4
He/m   

2
00 c/1  (s/m)2  

Maxwell s Equations (vacuum):-   

(1) 0Bc

  

(2) 0/E

    

       (113a)   

(3) 0
t

B
E

 

(4)
0c

J

t

E

c

1
Bc

   

       (113b)  

where  and J are charge density and current flux. It is simply checked that all terms 
in the four equations, written as they are above, have units Nm-1C-1.  

In a gauge in which the scalar potential is zero, AB  and t/AE . 
Maxwell s equations (1) and (3) are then identities. A convenient representation of a 
plane electromagnetic wave is,           

         (114) 

ck     and     0kA         with trkcosA2eeAA 00
trkitrki

0  
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which ensures all the Maxwell equations are obeyed, and for which,   

trksinAk2B     and     trksinA2E 00

 
         (115)  

At r = 0 (115) reduces to (101). Note that k  is in the direction of wave propagation, 

0A  is in the direction of the polarisation (electric field vector), and B  is 

perpendicular to both. Note also that the matrix elements of H which enter the cross-
section formula are defined by amplitudes E0 and B0 which are only half the true 
amplitude of the electromagnetic wave, i.e.,   

00 AE and 00 kAB

 

NB: [A] = NC-1s.          (116)  

Electromagnetic energy density, 2

0

20 B
2

1
E

2
 ,  3Jm

 

         (117) 

Electromagnetic energy flux,  12
em

0
em sJmJ   ,BE

1
J

 

         (118)  

We are now in a position to evaluate the photon flux (in photons per square meter per 
second) corresponding to the plane wave of Equs.(115). From (118) the energy flux 
(Joules per square metre per second) at the origin (r=0) is,    

tsin
cB4

tsin
c

E4
tsin

kA4
J 2

0

2
02

0

2
02

0

2
0

em

  

         (119)  

The time average value is thus,      

0

2
0

0

2
0

em

cB2

c

E2
J

   

         (120)  

Since the energy per photon is  the photon flux corresponding to a 
monochromatic, unidirectional plane wave is therefore simply,      

0

2
0

0

2
0N cB2

c

E2
J

   

         (121)  

where the superscript N denotes a number density, i.e. photons per square metre per 
second.  

Finally, the dimensionless electromagnetic fine structure constant is given by,     

137

1

4

ce

c4

e 2
0

0

2

    

         (122)  

Finally, we also note that the dimensions of a magnetic dipole moment, defined as the 
product of current and area, are [m] = Cm2s-1, and this agrees with the dimensions of 
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the factor pM2/e used to non-dimensionalise the magnetic moments of the nucleons. 

This also confirms that [mB] = energy.  

4. Evaluation Of The Cross-Sections  

4.1 Deuteron Photodisintegration: Magnetic Dipole Cross-Section 
We have seen in Section 3.2 that the magnetic dipole matrix element between the 
bound 3S state and a free 1S state is non-zero only if the azimuthal quantum number 
(m) is zero, i.e. only if the deuteron has zero spin component parallel to the magnetic 
field, B. We shall assume that we are dealing with unpolarised deuterons. In this case 
only one in three deuterons will be favourably aligned with the incident radiation s B-
direction (because the three triplet states are equally likely). The formula for the 
unpolarised disintegration cross-section is therefore derived from the transition 
probability per second, Equ.(100), by dividing by the photon flux, Equ.(121), and also 
by a factor of 3. Explicitly including the density of states from Equ.(102), gives,    

2

outin2
0

0
2
maxdis

M H
cB2k

mr2

3

1

   

         (123)  

where k relates to the nucleons, i.e. m2/kW 2 is the total nucleon energy, 

whereas  relates to the photon, i.e. the photon energy is BW . Recall that m 
is the reduced mass (roughly Mp/2). The squared matrix element is given by the 
product of the spin part, Equ.(112), and the spatial part, Equ.(56), i.e.,   

max

2

22

2

21
p

0
2

outin
rE/B

~
1k

~
4

M2

Be
H              (124)  

Substituting (124) into (123), and noting that the two particles are protons and 
neutrons in this case, gives,  

max

2

22

2

np
p

0
2
0

0
2
maxdis

M
rE/B

~
1k

~
4

M2

Be

cB2k

mr2

3

1

 

         (125)  

where p = 2.7928, n = -1.9130, so that p - n = 4.7058. Also recall from equ.(34c) 

and the associated discussion that 
21/

~
2 aBm  and a/1

~ 1  where 1a is the 
singlet scattering length of the deuteron (-23.69fm). Also, following Evans, we define 
the radius of the deuteron as fm32.4/1 . Finally, for convenience we define 
a length parameter by,      

mc2
L np

    

         (126)  

noting that it is the reduced mass which appears in Equ.(126). Using (122) for the fine 
structure constant, Equ.(125) reduces to,  
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21

21

MM
2dis

M )ak(1

/a1
          where,

BW

WB
L

3

2

 
         (127)  

It is important to recall that the singlet scattering length is negative (i.e. unbound), 
which results in the numerator of M being ~42. If the singlet state were bound (and 
hence 1a positive), the disintegration cross section for the bound triplet state would 
thus be smaller.  

4.2 Deuteron Photodisintegration: Electric Dipole Cross-Section 
In the same manner as in Section 4.2, the electric dipole transition cross-section may 
be written, using Equs.(100, 102, 121),    

2

outin2
0

0
2
maxdis

E H
E2

c

k

mr2

   

         (128)  

There is no polarisation factor of 1/3 in this case, since the spin direction of the 
deuteron is irrelevant for the electric dipole transition. The direction of the final 
orbital (L) state of the free neutron and proton must align with the spin direction 
(polarisation) of the initial photon. This means that only one of the L = 1 orbital states 
(namely m =0) is possible. But that has been accounted for in using the same density 
of states expression as for the S-waves, Equ.(102), since this implicitly assumes just 
one spin state (i.e. it gives the density of spatial states only).   

Substituting into (128) for the matrix element from Equ.(83) [times (eE0)
2] and also 

using Equ.(122) for the fine structure constant, gives,   

D
2

3

2
D

2422

3

2

2

max

422

4
2
0

2
2
0

0
2

maxdis
E

a8
1
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BW

3

32
       

a
8

1
k

k)BW(m
4

3

16
       

a
8

1
rk

k

3

16
Ee

E2

c

k

mr2

 

         (129)  

where the radius of the deuteron is mB2//1D , recalling that m is the 

reduced mass, i.e. 4/)( np MMm . We have replaced the incoming photon energy 

 with B+W in the above, recalling that W is the sum of the kinetic energies of the 
two free nucleons (in the CoM system).  

Equ.(129) appears to differ from Evans Chapter 10, Equ.(4.21) by a factor of 4. 
Why? There must be something amiss in my derivation. Also note that the 
correction term in (129) contains a factor of 8/ 2 which Evans expression does 
not have. This might be because the range of the square-well potential is not 
quite the same as the effective range used by Evans. This should be 
demonstrable using Evans Equ.(3.19).  
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4.3 np Capture Cross Sections 
The (corrected) photodisintegration cross sections of the deuteron are, following 
Evans,  

npD  :-  

WB

BW
L

3

2
M

2
M

M
dis

   

                     (130)  

3

E
2
3

E
dis WB

BW

3

8

   

                     (131)  

Where Evans expresses the Dnp  cross-sections in terms of the following, 
M = the reduced mass; 
B3 = the binding energy of the deuteron (triplet state); 
W = the total kinetic energies of the neutron and proton in the centre of mass system 
(this applies whether the nucleons are the incident particles or the products). The 
photon energy is given by hf  W + B for energies small compared with Mn; 
k = the relative wavenumber of the nucleons, such that MW2k 22  for energies 
small compared with Mn; 

3 = the radius of the deuteron = 3MB2/

 

r01 = effective range of the singlet nuclear force = 2.7 fm 
r03 = effective range of the triplet nuclear force = 1.7 fm  

The triplet scattering length a3 is given by,      

2
3

03

33 2

r1

a

1

    

             

In this universe the singlet spin state of the deuteron is not bound. This is reflected in 
the negative sign of the singlet scattering length, a1 = -23.69 fm. However, for the 
purposes of our investigations in this Section we shall assume a relation like (17) 
applies also for the singlet state if this is bound, i.e.,   

2
1

01

11 2

r1

a

1

 

where, 11 MB2/

  

             

and, in obvious notation, B1 is the binding energy of the singlet state (this applying 
only for a nuclear force which has been increased sufficiently to bind the singlet 
deuteron state).  

To derive the np capture cross-sections we use the general relation between a reaction 
and its inverse, i.e.,  
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Aa of statesspin  ofnumber 

B  b of statesspin  ofnumber 

p

p

AaBb

)BbAa(
2

a

b

 
         (132)  

where pa is the 3-momentum of particle a in the centre-of-mass (CoM) system, so 
that pa = pA, and similarly pb = pB is the 3-momentum of particle b (or B ) in the 
CoM system. We note that the RHS of (135) is just the ratio of the density of states 
available to b + B as compared with a + A. Thus, Equ.(135) expresses the phase-space 
advantage, or disadvantage, that one configuration has over the other. This phase 
space (dis)advantage is the sole difference between the forward and backward cross-
sections (i.e. the dynamical part of the cross section, as determined from the Feynman 
diagram, is the same for both). In the case of interest Equ.(135) becomes,    

2

n

2

n p

p

2

3

2x2

2x3

p

p

pnD

)Dpn(

   

         (133)  

The exact relativistic formulae relating the required 3-momenta to the quantities W 
and B in terms of which the above cross-sections have been expressed are,  

2

2
2
n c4

W
MW2p

 

and 2
pn

42
D

22 c)MM(WcMcpcp             (134)  

where the subscripts denote the deuteron, neutron and proton masses, so that the 
deuteron binding energy is just 2

pnD c)MM(MB . Recall that M is the 

reduced mass, and so is roughly half Mp. The above formulae from Evans have been 
derived assuming kinetic energies which are sufficiently small compared with the 
nucleon mass (Mp ~ 938.27MeV). [NB: At 1 second, 3kT ~  2.6 MeV < 0.3%Mp, so 
this approximation is fine for our purposes]. In this case, Equs.(137) simplify to,     

MW2p2
n

 

and BWcp

    

         (135)  

as assumed by Evans. Using (138), Equ.(136) becomes,     

WMc2

BW

2

3

pnD

)Dpn(
2

2

   

         (136)  

Hence, using Equ.(136) with Equ.(130) or (131) gives the capture cross-sections as,  

Dnp  :- 

WMc2

BWB
L

2M
2
M

M
cap

    

         (137)  

where,   
Mc2

L np
M

     

       (137a)  
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and,   
2

1

2
31

M
ka1

/a1

     
       (137b)  

and where the gyromagnetic moments are given by 9135.1  and  7934.2 np , 

and  is the electromagnetic fine-structure constant ( c/e2 ) as usual. Note that the 
dimensions of the cross-section come from the LM term, which has dimensions of 
length.  

WBMc2

BWB
4

2E
2
3

E
cap            (138) 

where,   
303

E /r1

1

     

       (138a)  

Note that the dimensions of the E cross-section come from the radius of the 
deuteron term 3 .  

These capture cross-sections may be checked against the capture reaction rate given 
by Hoffman et al. They give the reaction rate per neutron per second for an assumed 
proton density of one mole per cm3. [NB: This is, of course, the same as the reaction 
rate per proton per second for an assumed neutron density of one mole per cm3]. 
Rather surprisingly at first sight, this reaction rate is the same at all temperatures 
between 106 oK and 109 oK. Actually this follows from our cross-section, Equ.(137) as 
follows:-  

For the temperature range of interest, a1k may be neglected compared with unity 
(strictly it is of the order of unity at 109 oK, but is negligible at 108 oK and below). 
Thus, the term M reduces to the constant 42.2. Moreover, in this temperature range 
the maximum thermal energies (1.5kT) are of order 0.13 MeV, and hence small 
compared with the deuteron binding energy (2.22 MeV). Hence we replace B + W in 
the numerator of Equ.(19) with B. Finally, since we are dealing with non-relativistic 
speeds, the centre-of-mass total energy (W) is Mnv

2/4 = Mv2/2, where v is the relative 
velocity of the incident proton and neutron. [NB: W is half the kinetic energy in the 
lab frame, in which one of the nucleons is at rest]. Hence, with these 

approximations, Equ.(137) becomes,  

b)(  
v

c
2.2

v

c

46.469

22.2
)fm991.0(

137

8.93

v

c

Mc

B
L 21.21

2
3

2
2

3

2
2
M

M
cap (139)  

where b = microbarns, and one barn = 10-28 m2 = 100 fm2. Thus, (139) gives,     

/secm  10 x 60.6v 326M
cap

    

         (140)  

Now the reaction rate per neutron per second is given by capp v  where p is the 

proton number density. Thus, for an assumed proton density of one mole per cm3 (i.e. 

p = 6.03 x 1023 / (10-2 m)3 = 6.03 x 1029 m-3), Equ.(140) gives the reaction rate to be 
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6.60 x 10-26 x 6.03 x 1029 = 4.0 x 104 per second. This compares well with the reaction 
rate given by Hoffman et al of 4.37 x 104 per second (per mole/cm3), confirming that 
our derivation appears to be reliable.  

Strictly, we have not yet checked that the E capture cross-section is negligible in 
comparison. For the approximations introduced above, Equ.(138) reduces to,   

b)(  
c

v
680(fm)  

c

v
068.0

c

v
024.0xfm31.4

137

8.20 22E
cap

 

         (141)  

Unlike the M cross-section, (139), the E cross-section increases with energy (or 
speed, v). Hence it produces an energy dependent reaction rate. For the assumed one 
mole per cm3 particle density the reaction rate due to the E mechanism is given for a 
range of temperatures below,  

T (oK) v (m/s) v/c E
cap ( b) Reaction rate due to E 

mechanism only (/sec) 
109 5 x 106 0.0166 11 3,300 
108 1.6 x 106 0.0052 3.5 330 
107 5 x 105 0.00166 1.1 33 
106 1.6 x 105 0.00052 0.35 3.3 

 

These compare with the M mechanism reaction rate of 40,000 /sec, derived above, 
and hence are confirmed to be negligible at all but the highest energy considered 
where the contribution of the E mechanism is ~8%. At this highest energy the total 
( E + M ) reaction rate agrees with Hoffman et al almost precisely (43,300 /sec).  

A further check on the capture cross-sections may be carried out at very low energies, 
corresponding to room temperature, i.e. 0.025 eV, for which v/c = 7.3 x 10-6. 
Equ.(139) then gives the M capture cross-section as 0.30 barns, in agreement with 
Evans. In stark contrast, the E mechanism cross-section from Equ.(141) is only        
5 x 10-9 barns, again in agreement with Evans (P.338, Problem answer).  

Finally, we check the photodisintegration cross-sections against the results plotted in 
Evans Chapter 10, Figure 4.1. The results are obtained in straight forward fashion 
from Equs.(130, 131). We must only notice that the k-dependence in the M term in 
Equ.(130) leads to the M capture cross section rising to a maximum very steeply at 
modest nucleon energies. We find this maximum to lie at W ~ 0.07 MeV (which 
appears to be twice that indicated by Evans, i.e. 37 keV). The cross sections agree 
well with Evans graph, thus:-           
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photon energy 
(B+W), MeV 

total CoM product nucleon 
energy (W), MeV 

E
dis  (millibarn)

 
2.3 0.076 0.11 
2.5 0.276 0.58 
3 0.776 1.57 
4 1.776 2.30 

4.44 2.216 2.34 
6 3.776 2.11 
8 5.776 1.68 
14 11.776 0.91 

 

(maximum cross-section shown in bold)  

photon energy 
(B+W), MeV 

total CoM product nucleon 
energy (W), MeV 

M
dis  (millibarn)

 

2.229 0.005 0.28 
2.234 0.01 0.37 
2.244 0.02 0.47 
2.254 0.03 0.52 
2.264 0.04 0.54 
2.274 0.05 0.550 
2.294 0.07 0.558 
2.314 0.09 0.551 
2.334 0.11 0.538 
2.354 0.13 0.523 
2.424 0.2 0.47 

3 0.776 0.24 
6 3.776 0.06 

 

(maximum cross-section shown in bold)  

Having established that this method of calculation gives reliable results for the 
Dnp  cross-sections in this universe, we are confident to go forward in 

Appendix A4 to consider how the same approach may be modified to give the cross 
sections for all two-nucleon reactions in a universe with a stronger nuclear force. 
Specifically we shall be interested in the cross sections for Hepp 2

2 . Before 
looking at the diproton production rate, however, we shall first adapt the method to 
estimate the rate of the reaction HeDp 3

2  in Appendix A3. 
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