The Algebraic Hydrogen Atom

Theenergy levels of the non-relativistic hydrogen atom can be derived without
solving for the associated states by making use of the Runge-L enz vector which
we met in the solution to the classical Kepler problem. This magical vector also
provides uswith ladder operatorswhich convert states of differing | quantum
number but the same principal quantum number, n.
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We want to find the energy levels of the non-relativistic hydrogen atom Hamiltonian,
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where e? isthe electron charge (possibly factored by 1/ 4z, , depending which units
you prefer).
Following Chapter ? we introduce the Runge-L enz vector, now in operator form,
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where the angular momentum operator is,

L=rxp 3
An explicit form for the momentum operator, p, such asits representation in the
spatial basis asizV , need not be specified. Instead we just need its commutation
properties,
lXi,XjJZO and lpl’ij:O and lxl’ij:|h5I] (4)

The commutatorsinvolving L and M can then be found (simply, if tediously). The
result has already been given in Chapter ?,
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Equ.(8) correspondsto L and M being constants of the motion (see Chapter ?). In

the context of the Kepler problem, M liesin the plane of the orbit whereas L is
perpendicular to the plane of the orbit. Correspondingly we find that the operators

obey,
L-M=M-L=0 9



Finally, the counterpart of the classical expression for the square of the Runge-Lenz

operator, M 2 =%E L2 + K2, can be derived to be,

M2 =%(L2 +h2)+etc? (10)

We now confine attention to,

e adegenerate sub-space of Hilbert space for which all states have the same
energy, E ;

e bound states so that E <O.

So long as we confine attention to this sub-space we can replace the Hamiltonian
operator on the RHS of (7) simply with E and we can normalised the Runge-Lenz
vector operator such that,

M= —% M (11)
So that (5-7) become,

L. Le]=inen Ly (12)

M, L |=inejq M1, (13)

M5 MiJ=ifiejn L (14)
The substitution,

NP =(L; M )2 (15)

leads to a simpler set of commutators,

N N; =i e o N (16)
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So the algebra decomposes into two closed but independent algebras, onefor N* and

onefor N, these two sub-algebras being identical and equal to the Lie algebra of the
Lie group SU(2) — the universal covering group of the group of rotationsin 3-
dimensions, SO(3), and the group of the (non-relativistic) Pauli spinors. The utility of
thisisthat we already understand the eigenval ue structure of the algebra of SU(2)

from considerations of angular momentum. Denoting N2 =N* - N* the eigenvalues
are,

NZ2=n,(n, +1D22 and NZ?=n_(n_+1)n? (19)

where n, take half-integral values0, %2, 1, %/, 2, °/,... Now it follows from (15)
that,

N2+N2=(2+M2)i2  and N2-N2=(C-M'+M'-L)/2 (20)



But from (9) the second of (20) gives N? = N?, so in this particular application (the
hydrogen atom) we require n, =n_. Hence the first of (20) becomes,
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But from (10) we have,
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So that (21) becomes,
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Hence, = —(2n, +1)*n? (24)
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2n%(2n, +1)* 2 n
where n=2n, +1 (26)

Equ.(25) isthe familiar non-relativistic solution for the energy levels of a hydrogen

atom, where « =e? / 7 isthe fine structure constant and n is the principal quantum
number, which, since n, takes half-integral values0, ¥, 1, %5, 2, °/,,... we see that n
takesintegral values 1, 2, 3, 4, 5... At the same time that Schrodinger was deriving
this result from the equation which was later to bear his name, Pauli derived it by the
above method, Pauli (1926).

The conversion of (12-14) to (16-18) by the substitution (15) will seem eerily familiar
to those who are acquainted with the finite representations of the Lorentz group,
SO(3,1). Indeed exactly the same commutator structure (12-14) can apply for the
Lorentz group if the generators are chosen to be Hermetian. For the Lorentz group it
is more common to choose the generators of the boosts as anti-Hermetian, which is
equivalent to replacing our M’ with iM’ . Equs.(12) and (13) are unchanged whereas
(14) acquires aminus sign on the RHS. However if we stick to the Hermetian
generators, asin (12-14), then a six-parameter group of unitary elementsis defined
by,

U=exp{i§-f+iﬁ-l\7'} (27)

where 6 and g are each rea 3-vectors. The group elements (27) are unitary by virtue

of L and M’ being Hermetian, which follows from (2,3). In contrast, the six-
parameter group defined by elements,

V=exp{i«9-f+/7-l\7’} (28)
j

is not unitary. The rotations, exp{id - L} are unitary, but the boosts, exp{s - M}, are
not. A representation of the generators as 4 x 4 matricesis,
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From these it is easily confirmed that the unitary group elements, (27), leave invariant
the 4-dimensional Euclidean metric w? + x? + y? + z> whereas the non-unitary group

elements (28) preserve the Minkowski metric t? — x* — y? — z2. Thereis areason why

the representation (28-30) of the Lorentz group is not unitary. There is ageneral
theorem that non-compact Lie groups have no finite unitary representations. And the
Lorentz group is non-compact because, as aresult of the signature of the Minkowski
metric, aboost which preserves this metric can be repeated indefinitely without
reproducing a group element.
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